АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ТЕСЛА ОТВЕЧАЕТ Д-РУ ЛУИСУ ДУНКАНУ И ОБЪЯСНЯЕТ ДЕЙСТВИЕ МОТОРА ПЕРЕМЕННОГО ТОКА 7 страница

Читайте также:
  1. I. Перевести текст. 1 страница
  2. I. Перевести текст. 10 страница
  3. I. Перевести текст. 11 страница
  4. I. Перевести текст. 2 страница
  5. I. Перевести текст. 3 страница
  6. I. Перевести текст. 4 страница
  7. I. Перевести текст. 5 страница
  8. I. Перевести текст. 6 страница
  9. I. Перевести текст. 7 страница
  10. I. Перевести текст. 8 страница
  11. I. Перевести текст. 9 страница
  12. Il pea.M em u ifJy uK/uu 1 страница

Следует отметить, когда в таком моторе применяется замкнутая вторичная обмотка, совсем нелегко при высокой частоте получить вращение, поскольку вторичная обмотка почти полностью отсекает силовые линии первичной — и тем сильнее, чем выше частота, позволяя проходить только слабому току. В таком случае, если только вторичная обмотка не замкнута через конденсатор, крайне важно, чтобы добиться вращения, расположить первичную и вторичную обмотки более или менее внахлест.

Но у этого мотора есть и еще одна интересная особенность, а именно: между мотором и генератором вообще не требуется никаких соединений, может быть, только через землю, ибо изолированная пластина способна не только отдавать энергию в пространство, но и получать ее из переменного электростатического поля, хотя в последнем случае количество энергии намного меньше. В данном примере один из выводов мотора соединен с изолированной пластиной или предметом, находящемся в переменном электростатическом поле, а другой вывод предпочтительно заземлен.

Вполне возможно, однако, что такие «беспроводные», если их можно так назвать, моторы могут работать от передачи энергии через разреженный воздух с больших расстояний. Переменные токи, особенно высокочастотные, поразительно свободно проходят даже через слаборазреженные газы. Верхние слои воздуха разрежены. Для того чтобы продвинуться на несколько миль в пространстве, требуется преодолеть лишь механические трудности. Нет никакого сомнения в том, что при высоких потенциалах, которые можно получить при помощи высоких частот и масляной изоляции, светящиеся разряды могут преодолевать многие мили в разреженном воздухе, и что таким способом, используя энергию в несколько сот тысяч лошадиных сил, можно питать моторы и лампы на значительном расстоянии от стационарных источников. Но подобные схемы я упоминаю только как возможные. Нам вообще не потребуется передача энергии. Прежде чем сменятся несколько поколений, наши машины будут получать энергию в любой точке вселенной. Эта идея не нова. Человечество пришло к ней уже давно, ведомое разумом и инстинктом. Ее высказывали по-разному и в разных местах в древнейшей и новейшей истории. Мы находим ее в прекрасном мифе об Антее, который использует мощь Земли; мы находим ее в тонких размышлениях одного из ваших выдающихся математиков и во многих намеках и высказываниях мыслителей современности. Везде в космосе есть энергия. Она статическая'или кинетическая? Если статическая, то наши надежды напрасны; если кинетическая — а мы знаем, что это так, уверены в этом, — то только вопрос времени, когда же люди смогут подключиться к самой природной сети. Из всех, живых и мертвых, Крукс наиболее приблизился к решению. Его радиометр вращается при свете дня и во тьме ночи; он вращается везде, где есть тепло, а тепло есть везде. Но, к сожалению, его прекрасное маленькое устройство, что касается развития, а это и есть самое интересное, следует внести в список самых неэффективных машин, которые когда-либо создавались!

Описанный перед этим опыт только один из ряда равно интересных экспериментов, которые можно производить, применяя только один провод, с переменным током высокого потенциала и высокой частоты. Мы можем подключить изолированный провод к источнику такого тока, пропустить по нему ток малой силы, и в любой его точке получить сильный ток, способный расплавить толстый медный провод. Или можем, при помощи какого-нибудь устройства, разлагать раствор в любой электролитической ячейке, соединив один из полюсов банки с таким проводом или источником энергии. Мы также можем, присоединив к проводу или только приблизив к нему, зажечь лампу накаливания, вакуумную трубку или флюоресцентную колбу.

Каким бы неприемлемым ни казался этот план действий во многих случаях, он всё же практичен, и рекомендуется для производства света. Усовершенствованная лампа потребует небольшого количества энергии, и если провода вообще потребуются, мы должны будем научиться подавать такую энергию без обратного провода.

Теперь признанным фактом является то, что тело можно накалить или заставить светиться, либо подключив его одним проводом, либо просто приблизив к источнику импульсов надлежащего характера, и что в таком случае количества света достаточно для того, чтобы изготовить практичный источник его. Следовательно, по меньшей мере, стоит постараться определить наилучшие условия и изобрести наилучшие приборы для достижения такой цели.

Некоторый опыт в этом направлении уже имеется. И я остановлюсь на нем подробнее в надежде на то, что эти эксперименты окажутся полезными.

Нагрев проводника, заключенного в колбу и присоединенного к источнику переменного тока большой частоты, зависит от стольких вещей различной природы, что трудно сформулировать общее правило, по которому происходит максимальный нагрев. Что касается размеров сосуда, то недавно я обнаружил, что при обычном или близком к обычному атмосферном давлении, когда воздух хорошо изолирует, и, следовательно, практически такое же количество энергии той же частоты и потенциала отдается предметом, неважно большая колба или маленькая, предмет хорошо нагревается, если его заключить в небольшую колбу, так как локализация тепла в этом случае выше.

При пониженном давлении, когда воздух более или менее проводит ток, или если воздух достаточно нагрет для того, чтобы стать проводником, тело накаляется сильнее в более просторной колбе, очевидно, потому, что при всех одинаковых условиях испытания, тело отдает больше энергии в большой колбе.

При высокой степени вакуумизации, когда вещество в колбе становится «лучистым», у большой колбы также имеется преимущество, но совсем небольшое.

И, наконец, при крайне высокой степени разряжения, которой нельзя достичь без применения специальной аппаратуры, за исключением случаев, когда сосуд очень мал, нет различимых отличий в степени нагрева.

Эти наблюдения явились результатом нескольких опытов, из которых один, который демонстрирует эффект размера колбы при высокой степени разряжения, можно описать, так как он имеет интересную особенность. Взяли три круглые колбы диаметром 2, 3 и 4 дюйма и в центре каждой поместили нить накаливания одинаковой длины и толщины. В каждой колбе часть нити была соединена с платиновым подводящим проводом, помещенным в стеклянную ножку, впаянную в колбу; при этом, конечно, прилагались все усилия для того, чтобы во всех трех случаях устройство было одинаковым. Каждая была заключена в трубку из полированного алюминия, которая удерживалась пружиной. Назначение этой алюминиевой трубки будет объяснено позже. В каждой колбе часть нити одинаковой длины выступала из металлической трубки. Теперь достаточно сказать, что при таких условиях нити одинаковой длины и толщины — иными словами тела одинакового объема — накаливались. Три колбы были припаяны к стеклянной трубке, соединявшейся с насосом Шпренгеля. При достижении высокой степени разряжения стеклянная трубка была запаяна. Затем был подан ток последовательно к каждой колбе и было обнаружено, что все нити накалились примерно одинаково, разве только самая маленькая колба, расположенная между двумя побольше, светилась немного ярче. Этот результат был ожидаем, так как, когда загоралась каждая из ламп, свечение проходило через две другие, поскольку все три колбы представляли собой один сосуд. Когда все три лампы соединили с катушкой параллельно, в самой большой нить горела ярче всех, в средней немного тусклее, а в самой маленькой нить была немного красной. Затем колбы запаяли и включали отдельно. Яркость нитей теперь была такова, какой должна была быть, исходя из предположения, что отдаваемая энергия пропорциональна поверхности колбы, причем эта поверхность в каждом случае представляет собой одну из пластин конденсатора. Соответственно, разница между самой большой и средней была меньше, чем разница между средней и маленькой колбами.

Во время этого опыта было сделано интересное наблюдение. Все три колбы подвесили на оголенном проводе, соединенном с выводом катушки, большую — на конце провода, маленькую — на некотором расстоянии, а среднюю — на таком же расстоянии от маленькой. Нити в обеих больших лампах горели, как и ожидалось, в то время как в маленькой она не добрала и ожидаемой степени свечения. Это наблюдение заставило меня сменить положение ламп, и тогда я обнаружил, что какая бы лампа ни оказалась в середине, она будет гореть тусклее, чем с краю. Этот загадочный результат, конечно, был отнесен на счет электростатического воздействия ламп друг на друга. Когда их поместили вдали друг от друга или в углах равнобедренного треугольника из медного провода, они горели соответственно своему размеру.

Что касается формы сосуда, то она тоже важна, тем более при высокой степени вакуумирования. Из всех возможных конструкций наиболее предпочтительна шарообразная с телом из тугоплавкого материала внутри. По опыту ясно, что в таком шаре тугоплавкий предмет определенных размеров значительно легче накалить, чем в колбе другой формы. Преимущество также заключается в придании телу накаливания формы шара, по очевидным причинам. В любом случае тело надо поместить в центр, где атомы, отскакивающие от стен, соударяются. Этой цели легче всего достичь в сферической колбе; но она достижима и в цилиндрическом сосуде, где нить или нити расположены на его оси, а возможно и в параболическом сосуде или сферическом, где тугоплавкие части помещены в его фокусе; хотя последнее вряд ли возможно, так как наэлектризованные атомы должны в любом случае нормально отталкиваться от поверхности, с которой они соударяются, если только скорости не крайние, тогда они, возможно, будут следовать общим правилам отражения. Неважно, какой формы сосуд, если воздух откачан слабо, нити, помещенные в любую точку, будут накаливаться одинаково; но если воздух откачан сильно и колба имеет сферическую или грушевидную форму, как обычно, то образуются фокальные точки и нить накаливается сильнее всего в этих точках или поблизости от них.

Для иллюстрации этого эффекта у меня имеются две небольшие одинаковые колбы с разной степенью вакуумирования. При подключении к катушке нить в той колбе, откуда воздух откачан слабо, накаливается одинаково по всей длине, в то время как в последней та часть нити, что расположена ближе к центру колбы, светится гораздо более интенсивно, чем остальные. Любопытно то, что это явление наблюдается, даже если две нити поместить внутрь и каждую соединить с выводом катушки, и, что еще более любопытно, если они расположены рядом, конечно, при условии, что воздух совсем откачан. Во время опытов я заметил, что нити перегорают в определенный момент, и вначале приписывал это качеству угля. Но когда это произошло несколько раз подряд, понял, почему это происходит.

Для того чтобы накалить тугоплавкое тело в колбе, желательно, по причине экономии, чтобы вся переданная в колбу от источника энергия достигла этого тела без потерь; оттуда, и только оттуда, она должна испускаться. Конечно, не подлежит сомнению, что нельзя достичь этой теоретической цели, но при помощи правильной конструкции осветительного прибора можно приблизиться к ее достижению.

По многим причинам накаливаемое тело помещают в центр колбы, обычно оно расположено на стеклянной ножке, через которую проходит подводящий провод. Поскольку потенциал на этом проводе переменный, то разреженный газ вокруг этой ножки подвергается индукции, она нагревается и подвержена бомбардировке. Таким образом, большая часть энергии, предназначенная для освещения, — особенно, когда используется высокая частота, — может теряться. Дабы избежать этих потерь,чили по крайней мере свести их к минимуму, я обычно экранирую разреженный газ от индукции провода, помещая его в трубку из проводника. Сомнений не вызывает, что из всех металлов для этой цели наиболее пригоден алюминий по причине своих многочисленных замечательных свойств. Единственный его недостаток в том, что он легкоплавкий и, следовательно, надо правильно разместить его по отношению к телу накаливания. Обычно изготавливается трубочка, диаметр которой немного меньше диаметра стеклянной ножки, и надевается на нее. Трубочка изготавливается путем оборачивания на токарном станке алюминиевой полосы нужного размера вокруг сердечника, при этом надо зажимать полоску плотно при помощи чистой замши или промокательной бумаги, а сердечник вращать очень быстро. Полоска плотно наматывается вокруг сердечника и таким образом получается двух- или трехслойная трубка. При надевании на ножку давления обычно хватает, чтобы трубочка не соскользнула, но для верности нижнюю кромку стоит загнуть внутрь. Верхний внутренний угол полоски — тот, что ближе всего к телу накаливания, — следует отрезать по диагонали, так как он, находясь ближе всего к источнику тепла, часто заворачивается и почти касается или даже касается подводящего провода или нити, поддерживающей тело накаливания. В таком случае большая часть поступающей в колбу энергии расходуется на нагревание трубочки, и лампа становится бесполезной. Алюминиевая трубочка должна выступать над стеклянной ножкой — на дюйм или два, — в противном случае стекло будет находиться слишком близко к раскаленному предмету, сильно нагреется и станет более или менее сносным проводником и вследствие своей проводимости установит электрический контакт между металлической трубкой и подводящим проводом, причем большая часть энергии, опять же, израсходуется на нагрев последнего. Посему лучше сделать верхний конец трубки диаметром в 1 дюйм или меньше. Для того чтобы еще уменьшить опасность, возникающую от нагревания стеклянной ножки, а также для того, чтобы предотвратить контакт между металлической трубкой и электродом, предпочитаю обернуть ножку несколькими слоями тонкой слюды, которая по ширине совпадает с металлической трубкой. В некоторых колбах я также применял внешний изолирующий колпачок.

Приведенные замечания предназначены для экспериментаторов на первых стадиях опытов, так как трудности, с которыми они встретятся в дальнейшем, каждый преодолеет по-своему.

Для иллюстрации эффекта экранирования я взял две лампы одинакового размера, размещение их стеклянных ножек, проводов подводки и соединенных с ними элементов накаливания должно быть абсолютно одинаковым. Ножка одной лампы имеет алюминиевый колпачок, на ножке другой его нет. Сначала обе лампы были соединены с насосом Шпренгеля. Когда был максимально откачан воздух, скачала отсоединили и запаяли основную трубку, затем обе лампы. Итак, уровень разряжения в обеих одинаков. Когда их поочередно соединяют с катушкой, дающей определенный потенциал, угольная нить той лампы, где есть металлический колпачок, сильно накаливается, в то время как нить другой лампы, при том же потенциале, даже не краснеет, хотя фактически получает больше энергии, чем первая. Если их вместе подключить к выводу катушки, разница станет еще заметнее, что демонстрирует важность экранирования. Металлический колпачок, надетый на стеклянную ножку с подводящим проводом, фактически выполняет две функции. Первая — он работает более или менее как электростатический экран, таким образом экономя энергию, подаваемую в лампу, и вторая — каким бы плохим экраном он ни был, он выполняет механическую задачу по предотвращению бомбардировки, и соответственно, интенсивного нагрева и возможного повреждения тонкой опоры элемента накаливания, или стеклянной ножки с подводящим проводом. Я говорю тонкой опоры, ибо очевидно, что для более полной локализации тепла на элементе накаливания его опора должна быть действительно тонкой, чтобы забирать как можно меньше тепла вследствие своей проводимости. Из всех опробованных опор я обнаружил, что наилучшая — это обычная нить накаливания, в основном потому, что из всех проводников она может выдерживать наибольшую степень нагрева.

Эффективность металлической трубки, как электростатического экрана, зависит от степени разряжения.

При крайне высокой степени разряжения, которая достигается с трудом при помощи насоса Шпренгеля, когда вещество внутри колбы в состоянии крайне высокой излучательной способности, трубка действует наиболее эффективно. Тень от верхнего края трубки ясно проступает на колбе.

При немного меньшей степени разряжения, которую можно назвать обычным «неударным» вакуумом, и когда частицы вещества в основном движутся по прямой, экран всё еще хорошо работает. Для того чтобы пояснить предыдущее высказывание, необходимо сказать, что то, что есть «неударный» вакуум для катушки, работающей, как обычно, от импульсов, или тока низкой частоты, не является даже близко таковым, когда катушка работает от тока очень высокой частоты. В таком случае разряд очень свободно может пройти через разреженный газ, через который может не пройти низкочастотный разряд, даже если потенциал будет гораздо выше. При нормальном атмосферном давлении имеет место противоположное правило: чем выше частота, тем меньше вероятность пробоя искры между выводами, особенно если это разрядные головки или шары определенного размера.

И наконец, при низкой степени разряжения, когда газ хорошо проводит ток, металлическая трубка не только не действует, как электростатический экран, но и является недостатком конструкции, усиливающим боковое рассеивание энергии от подводящего провода. Этого, конечно, следует ожидать. В данном случае металлическая трубка хорошо контактирует с подводящим проводом и большая часть бомбардировки направлена на трубку. Если электрический контакт слаб, то трубка всё-таки полезна, хотя она, может быть, и не экономит энергию, но всё же защищает опору элемента накаливания, а также служит для концентрации энергии на нем.

Если алюминиевая трубка призвана выполнять функцию экрана, то ее полезность ограничивается степенью откачки воздуха, когда она изолирована от электрода, то есть, когда газ в целом не проводник, и молекулы или атомы действуют как независимые отдельные носители зарядов.

В дополнение к работе в качестве эффективного экрана, в истинном понимании этого слова, токопроводящая трубка или покрытие могут также играть роль, по причине своей токопроводимости, компенсатора или демпфера во время бомбардировки стеклянной ножки. Предположим следующую ситуацию: при ритмической бомбардировке проводящей трубки, по причине ее несовершенства как экрана, обязательно должно случиться так, что некоторые молекулы или атомы ударят по трубке ранее других. Те, что ударятся первыми, отдадут свой избыточный заряд, и трубка наэлектризуется, причем электризация моментально распространится по ней. Но это должно уменьшить количество энергии, теряемой при бомбардировке по двум причинам: первая — заряд, отданный атомами, распространяется по большому участку поверхности, следовательно, электрическая плотность в любой точке уменьшается и атомы отталкиваются с меньшей энергией, чем если бы они ударились о хороший изолятор; вторая — так как трубка наэлектризована атомами, которые первыми вступили с ней в контакт, продвижение следующих атомов к трубке затрудняется отталкивающей силой, с которой трубка должна воздействовать на одинаково заряженные атомы. Эта сила должна оттолкнуть значительное количество атомов от трубки и, во всяком случае, уменьшить энергию их удара. Ясно, что чем ниже уровень разреженности, тем лучшим проводником является газ, и ни один из вышеуказанных эффектов не может иметь место, а, с другой стороны, чем меньше количество атомов, тем с большей скоростью они движутся; иными словами, чем тщательнее откачан воздух, до определенного предела, тем более отчетливыми будут оба явления.

 

То, что я сейчас сказал, может служить объяснением явлению, наблюдавшемуся профессором Круксом, а именно: разряд в колбе гораздо сильнее, когда в ней находится изолятор, а не проводник. По моему мнению, проводник служит демпфером для движущихся атомов двумя указанными способами, поэтому для того чтобы сформировать видимый разряд, требуется гораздо более высокий потенциал, если в колбе проводник, имеющий значительную площадь поверхности.

Для того чтобы разъяснить эти высказывания, я должен обратиться к рисункам 18, 19 и 20, на которых показаны различные конструкции широко применяемых ламп.

На рисунке 18 показана в разрезе сферическая лампа L со стеклянной ножкой 5, содержащей подводящий провод w, соединенный с нитью накаливания l, которая в свою очередь служит опорой для элемента накаливания т в центре лампы. М ~ это тонкая полоса слюды, в несколько слоев намотанная на ножку s, а а — это алюминиевая трубка.

 

На рисунке 19 показана такая же лампа, но уже усовершенствованная. Металлическая трубка S приклеена к горловине трубки. В самой трубке укреплена пробка Р, изготовленная из изоляционного материала, по центру которой проходит металлический вывод / для соединения с подводящим проводом w. Этот вывод должен быть хорошо изолирован от металлической трубки S, следовательно, если клей токопроводящий, — а в большинстве случаев так и бывает, — то пространство между пробкой Р и горловиной колбы надо заполнить хорошим изолятором, например слюдяным порошком.

На рисунке 20 показана лампа, изготовленная в экспериментальных целях. В этой лампе алюминиевая трубка снабжена внешним выводом для изучения поведения колпачка в различных условиях. О ней пойдет речь при описании дальнейших опытов.

Поскольку бомбардировка ножки, по которой проходит подводящий провод, происходит благодаря индуктивному воздействию провода на разреженный газ, было бы полезным уменьшить величину воздействия в практичных пределах, применив тонкий провод, изолированный толстым слоем стекла или другого материала, и как можно более сократить ту часть провода, которая проходит сквозь газ. Для выполнения этих условий я применил большую трубку Т (рисунке 21), которая немного выступает внутрь колбы, и имеет на вершине очень короткую стеклянную ножку s, в которой запаян подводящий провод w, а верхнюю часть ножки я защитил от нагревания небольшой алюминиевой трубкой а, а под ним слоем слюды, как обычно. Провод w, выходящий наружу сквозь большую трубку, должен быть хорошо изолирован, например стеклянной трубкой, а пространство внутри следует заполнить каким-либо отличным изолятором. Из всех изолирующих порошков, которые я испробовал, наилучшим является слюдяной. Если не принять эту меру предосторожности, то трубка Т, выступающая внутри колбы, непременно треснет вследствие нагрева кистевым разрядом, который имеет тенденцию появляться в верхней части трубки, там, откуда откачан воздух, в особенности, если вакуумирование высокое, и, следовательно, необходимый для работы лампы потенциал очень высок.

На рисунке 22 показана подобная конструкция, где большая трубка Т выступает внутрь колбы и несет элемент накаливания пг. В данном случае подводящий провод снаружи внутрь колбы отсутствует, а энергия поступает с покрытий конденсатора СС. При такой конструкции изолятор Р должен плотно прилегать к стеклу и быть довольно толстым, в противном случае разряд может миновать провод w, который соединяет внутреннюю пластину конденсатора с элементом накаливания т.

Молекулярная бомбардировка стеклянной ножки внутри колбы доставляет много неприятностей. Для примера я опишу явление, которое наблюдал часто и с большим неудовольствием. Можно взять колбу, лучше большую, и хороший проводник, например угольный, укрепить его внутри на платиновом проводе в стеклянной ножке. Из колбы можно откачать воздух, довольно сильно, когда появляется свечение. Когда лампу подключают к катушке, угольный элемент, если он мал, сначала накаляется, но его яркость немедленно уменьшается, а затем где-то в середине ножки проходит разряд в форме ярких искр, несмотря на то, что платиновый провод находится в хорошем контакте с разреженным газом через угольный элемент или металл сверху. Первые искры очень ярки, и напоминают искры, получаемые на чистой поверхности ртути. Но по мере нагревания ими стекла, они, конечно, теряют свою яркость и прекращаются, когда стекло в месте излома накаляется или становится достаточно теплым для того, чтобы проводить ток. Когда наблюдаешь это впервые, явление кажется очень любопытным, оно показывает, как резко меняется поведение переменного тока, или импульсов высокой частоты по сравнению с постоянным током или током низкой частоты. В случае низкочастотных токов это явление, конечно, не возникло бы. Когда мы имеем частоту, полученную от механического источника, я думаю, стекло трескается вследствие бомбардировки, которая нагревает его и снижает изолирующие качества, но при высокой частоте, которую мы получаем от конденсатора, без сомнения, стекло может треснуть и без нагрева. Хотя на первый взгляд это и может показаться чрезвычайно необычным, но всё же этого следовало ожидать. Энергия, поступающая на подводящий провод, частично расходуется элементом накаливания, а частично — сквозь стекло благодаря действию индукции. Этот случай, таким образом, аналогичен тому, когда конденсатор при помощи проводника включается параллельно в цепь с источником переменного тока. При низкой частоте наибольшую нагрузку получает проводник, а конденсатор остается в сохранности; но при крайне высокой частоте, роль проводника может стать ничтожной. В последнем случае разность потенциалов на выводах конденсатора может стать такой высокой, что наступит пробой диэлектрика, несмотря на то, что выводы шунтированы проводником низкого сопротивления.

Конечно, необязательно, когда требуется накалить заключенное в колбу тело при помощи таких токов, чтобы оно было проводником, так как даже и совершенный изолятор может быстро накаляться. Для этого достаточно обернуть электрод изолирующим материалом, как, например, в лампе, показанной на рисунке 21, где тонкая нить накаливания обернута изолятором и поддерживает элемент такого же материала на своей верхушке. В начале бомбардировка идет за счет индукции через диэлектрик до тех пор, пока он не нагреется достаточно для того, чтобы стать проводником, и тогда бомбардировка продолжается как обычно.

В лампах, сконструированных, как показано на рисунке 23, применяется другой метод. В данном случае диэлектрик т укреплен на некотором расстоянии над угольным элементом. Угольный элемент соединен с подводящим проводом, который проходит сквозь стеклянную ножку, обернутую в несколько слоев слюды. Алюминиевая трубка а, как обычно, применяется для экранирования. Она устроена так, чтобы выступать на высоту угольного элемента и только диэлектрик т возвышается над ней. Бомбардировке в начале подвергается верхняя часть угольного элемента, а нижнюю часть защищает алюминий. Однако, как только диэлектрик т нагревается, он становится хорошим проводником и тогда превращается в центр бомбардировки, так как он более всего открыт для нее.

 

 

Во время таких опытов я сконструировал много ламп с одним проводом или без внутреннего электрода, в которых излучение проецировалось или фокусировалось на элементе накаливания. На рисунке 24 показана одна из таких ламп. Она состоит из сферической колбы L, у которой есть длинная горловина п сверху для усиления действия в некоторых случаях при помощи внешнего проводникового покрытия. Колба L внизу имеет небольшую круглую головку Ъ, которая служит для того, чтобы крепко ее удерживать в гнезде S, изготовленном из изоляционного материала, куда колба вклеена. Тонкая нить накаливания f, соединенная с проводом w проходит через центр колбы L. Нить накаляется в середине, где бомбардировка, исходящая снизу, наиболее интенсивна. Нижняя часть колбы до того уровня, куда достает край гнезда S, сделана токопроводящей при помощи фольги или чего-то подобного, а внешний электрод соединен с выводом катушки. Конструкция, показанная на рисунке 24, оказалась несовершенной для накаливания нити или элемента накаливания, находившихся в центре колбы, но хорошо работала, когда стояла цель — получить свечение.

Во время многих опытов, когда различные предметы устанавливались в колбах, как например, на рисунке 23, были сделаны интересные наблюдения.

Помимо прочего выяснилось, что независимо от того, где начиналась бомбардировка, как только достигалась высокая температура, оказывалось, что один предмет принимает на себя основную часть ударов, а другой предмет или другие предметы были разгружены. Это качество зависит в основном от точки плавления и от способности тела к «испарению» или к расщеплению — под последним термином понимается не только испускание атомов, но и распад на более крупные частицы. Это наблюдение соответствовало общепринятым понятиям. В колбе, откуда почти полностью откачан воздух, электричество истекает от электрода при помощи независимых носителей, которыми могут быть атомы и молекулы остатков воздуха, а могут быть атомы, молекулы и более крупные частицы самого электрода. Если электрод состоит из материалов различного характера и один из этих материалов более подвержен распаду, чем остальные, то по большей части носители тока происходят от этого материала, который легче нагревается, а, нагреваясь быстрее, быстрее и распадается.

Мне кажется, что подобный процесс имеет место и в лампах с однородным электродом, и я полагаю, что это основная причина распада. Должны быть какие-нибудь неровности, даже если поверхность отшлифована, что, конечно, невозможно в случае большинства тугоплавких материалов, которые применяются в качестве электродов. Предположим, что кончик электрода нагревается, тут же основная часть разряда начинает проходить через эту точку и небольшой кусочек электрода плавится и испаряется. Теперь возможно, что вследствие этого быстрого разрушения в точке атаки падает температура или возникает контрсила, как в дуге; в любом случае местный распад сталкивается с ограничениями, характерными для опыта, и тот же процесс происходит в другом месте. Нам электрод кажется равномерно светящимся, но на нем есть точки, которые постоянно перемещаются, в которых температура гораздо выше средней, и это значительно усиливает процесс распада. То, что нечто подобное происходит, по крайней мере когда температура электрода немного ниже, можно подтвердить следующим опытом. Хорошенько откачаем воздух из колбы, так, чтобы при довольно высоком потенциале разряд не мог пройти, то есть не светящийся, ибо слабый, невидимый разряд происходит всегда, при любых условиях. Теперь медленно увеличим потенциал, включая ток в первичной обмотке не более чем на мгновение. В какой-то момент в колбе появятся две, три или полдюжины светящихся точек. Эти места на стекле очевидно подвергаются более интенсивной бомбардировке, чем остальные, а это объясняется неравномерностью электрической плотности, что вызвано острыми выступами или, в общем, неровностями электрода. Но светящиеся участки постоянно перемещаются, что особенно хорошо видно, если удается их создать, а это говорит о том, что форма электрода постоянно меняется.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.01 сек.)