АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Уравнение теплопроводности в конечных разностях

Читайте также:
  1. V2: Волны. Уравнение волны
  2. V2: Уравнение Шредингера
  3. Адиабатический процесс. Уравнение адиабаты (Пуассона). Коэффициент Пуассона.
  4. АЛГОРИТМ РЕШЕНИЯ ЗАДАЧ НА УРАВНЕНИЕ ТЕПЛОВОГО БАЛАНСА
  5. В декартовых координатах каждая прямая определяется уравнением первой степени с двумя переменными и обратно: каждое уравнение первой степени
  6. В простом случае обычное дифференциальное уравнение имеет вид
  7. Внутреннее трение (вязкость) жидкости. Уравнение Ньютона
  8. Волна вероятности. Уравнение Шредингера
  9. Волновая функция.Уравнение Шредингера
  10. Волновое уравнение для упругих волн и его общее решение.
  11. Волновое уравнение для электромагнитных волн
  12. Волновое уравнение и его решение. Физический смысл волнового уравнения. Скорость распространения волн в различных средах.

Если =10 и =1 см то , т.е. коэффициент теплопроводности численно равен количеству тепла, которое проходит через площадь сечения вещества 1 см2 за время 1 секунду слой толщиной 1 см.

В системе СИ к-т теплопроводности равен 0.569 Вт/м*градС (Дж/с*м*градС) при 00

Температуропроводность — физический параметр вещества и, в частности, воды, способствующий передаче теплоты таким образом, что температура в каждой точке стремится к соответствующему в данный момент установившемуся состоянию. Характеристикой температуропроводности является коэффициент температуропроводности a = λ/(c ρ) [ c ρ = (Дж / кг* градС)(кг/м 3) =Дж/м3 * градС], где λ — коэффициент теплопроводности

[ a = λ/(c ρ)= (Дж/с*м*градС)/(Дж/м3*градС)=м2/с)] Коэффициент температуропроводности воды слабо зависит от температуры: при температуре, равной 0 и 10°С, a соответственно равно 0,485·10-3 и 0,504·10-3 м2/ч.

Вязкость. Вязкость есть физическое свойство вещества (жидкости, газа, твердого тела) оказывать сопротивление перемещению одной его части относительно другой. Вязкость является одним из главных свойств воды. Исследования показывают, что сопротивление жидкости растягивающим и сдвигающим усилиям проявляется лишь при различных скоростях движения одного слоя жидкости по другому, т. е. при возникновении угловых скоростей сдвига частиц. Со стороны слоя, движущегося быстрее, на слой, движущийся медленнее, действует ускоряющая сила. Наоборот, со стороны слоя, движущегося медленнее, на слой, движущийся быстрее, действует тормозящая, задерживающая сила. Эти силы, носящие название сил внутреннего трения, направлены по касательной к поверхности слоев.

По закону Ньютона, силы внутреннего трения пропорциональны градиенту скорости по нормали и площади, на которую они действуют. Относя силу внутреннего трения к площади, равной единице, получаем касательное напряжение в жидкости. Оно определяется по формуле

τ = μ / dn, (2.17)

где μ — динамический коэффициент вязкости (динамическая вязкость, – для t°С = 0°С, μ = 1,793·103 Па·с). Он определяет собой силу трения, приходящуюся на единицу поверхности при градиенте скорости, равном единице. Поэтому иногда его называют коэффициентом внутреннего трения. В реальной жидкости, в отличие от идеальной, μ ¹ 0.

Динамический коэффициент вязкости воды в сильной степени зависит от температуры, но почти не зависит от давления. Значение этого коэффициента для пресной воды, полученное опытным путем для t°С = 0°С, μ = 1,793·10-3 Па·с. При расчете динамического коэффициента вязкости применяют эмпирическую формулу Пуазейля:

μ = 0,000183/(1 + 0,0337 t + 0,000221 t 2), (2.18)

где t — температура воды.

Следует отметить, что во многие расчетные формулы входит отношение динамического коэффициента вязкости μ к плотности жидкости ρ, носящее название кинематического коэффициента вязкости (кинематическая вязкость):

ν = μ/ρ. (2.19)

Значения коэффициентов вязкости существенно уменьшаются с повышением температуры.

Динамический коэффициент вязкости соленой воды незначительно отличается от коэффициента вязкости пресной воды. Например, при t = 20°С и S = 25‰ он равен 1,052·10-3 Па·с, а для пресной воды — 1,003·10-3 Па·с, т. е. для соленой воды больше примерно на 5%.

Поверхностное натяжение. Поверхностное натяжение воды возникает на поверхности соприкасания ее с воздухом, твердым телом или другой жидкостью. Оно обусловлено силами притяжения между молекулами. Внутри воды силы притяжения между молекулами взаимно компенсируются, а на молекулы, находящиеся вблизи поверхности, действует нескомпенсированная результирующая сила, направленная внутрь от поверхности воды. Поверхностное натяжение стремится уменьшить поверхность жидкости до минимума. Поэтому капли жидкости имеют сферическую форму, а в невесомости — форму шариков (поверхность сферы является наименьшей из всех геометрических фигур равного со сферой объема).

Сила поверхностного натяжения F действует на свободной поверхности жидкости, направлена по касательной к поверхности и нормально к границе свободной поверхности; она определяется по формуле

F = σ l, (2.20)

где l — длина контура поверхности жидкости; σ — коэффициент поверхностного натяжения (поверхностное натяжение), H/м. Коэффициент поверхностного натяжения зависит не только от природы жидкости и ее температуры, но и от природы и состояния той среды, с которой соприкасается данная жидкость. В пределах от — 5... 35°С он может быть вычислен по формуле (Н/м)

σ = (75,64 - 0,15 t) 103. (2.21)

Коэффициент поверхностного натяжения соленой воды отличается незначительно от коэффициента поверхностного натяжения пресной воды.

Поверхностное натяжение влияет на условия обмерзания сооружений, испарение, волнение, влажность снежного покрова и другие гидроледотермические явления.

 

6. Смачивание. При соприкосновении твердого тела с водой смачивание наблюдается в том случае, когда взаимодействие между их молекулами (т.е. между молекулами воды и тела) сильнее взаимодействия между молекулами самой воды. В этом случае вода будет стремиться увеличить поверхность соприкосновения и растечется по твердому телу. Когда же взаимодействие между молекулами твердого тела и молекулами соприкасающейся с ним воды более слабое, чем между молекулами самой воды, вода будет стремиться сократить поверхность соприкосновения с твердым телом. По отношению к твердым телам вода обладает свойством полного и частичного смачивания и полного несмачивания.

Явление смачивания имеет большое значение при изучении передвижения влаги по капиллярам в почвогрунтах и в снеге. Поверхность смачивающей жидкости, находящейся в узких капиллярах, принимает вогнутую форму (рис. 2.1).

При вогнутом мениске давление жидкости (воды) под ним будет меньше атмосферного на уровне горизонта подземных вод P а на величину

Δ P = 2σ/ r, (2.22)

где r — радиус кривизны мениска (обычно принимается равным радиусу капилляра). Поэтому в капиллярах почвогрунтов вода поднимается на высоту h, при которой вес ее столба уравновешивает отрицательное дополнительное давление, обусловленное кривизной мениска:

Δ P = ρ gh, (2.23)

где ρ — плотность воды, g — ускорение свободного падения.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)