АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Решение. 1 способ. Метод окаймляющих миноров

Читайте также:
  1. Волновое уравнение для упругих волн и его общее решение.
  2. Волновое уравнение и его решение. Физический смысл волнового уравнения. Скорость распространения волн в различных средах.
  3. Выбрать разрешающий элемент (правило предыдущей теоремы), сделать шаг жордановых исключений. Получить новое опорное решение. Вернуться на шаг 2.
  4. Дифференциальное уравнение вынужденных колебаний и его решение. Резонанс. Резонансные кривые.
  5. Дифференциальное уравнение затухающих колебаний и его решение. Основные характеристики затухающих колебаний. Логарифмический декремент затухания. Апериодический процесс.
  6. Имеет ли система однородных уравнений нетривиальное решение. Если имеет, найти его.
  7. Метод Гаусса заключается в приведении системы линейных уравнений к ступенчатому виду и затем её решение.
  8. Рациональное управленческое решение. Способы принятия рационального решения. Списки. Дерево решений. Причинно-следственные диаграммы.
  9. Решение.
  10. Решение.
  11. Решение.
  12. Решение.

1 способ. Метод окаймляющих миноров. Находим любой минор второго по

рядка, отличный от нуля, например , по-

этому выписываем другой определитель . Нашелся определитель второго порядка, отличный от нуля, значит ранг . Теперь найдем определитель третьего порядка, окаймляющий найденный .

 

 

Берем другой определитель, окаймляющий

 

, как и предыдущий.

 

Больше окаймляющих миноров третьего порядка для нет, поэтому ранг А, равный наивысшему порядку минора, отличного от нуля, равен двум.

2 способ. Метод элементарных преобразований.

 

.

 

Получили 2-е нулевые строки. Поэтому ранг А равен 2 (очевидно минор второго порядка ).

Ответ: .

 

Контрольная работа № 2

“СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ”

ЗАДАНИЕ 1. Решить системы матричным способом и по формулам Крамера:

1. а) ; б) .
2. а) ; б) .
3. а) ; б) .
4. a) ; б) .
5. а) ; б) .
6. а) ; б) .
7. а) ; б) .
8. а) ; б) .
9. а) ; б) .
10. а) ; б) .
11. а) ; б) .
12. а) ; б) .
13. а) ; б) .
14. а) ; б) .
15. а) ; б) .
16. а) ; б) .
17. а) ; б) .
18. а) ; б) .
19. а) ; б) .
20. a) ; б) .
21. а) ; б) .
22. а) ; б) .
23. а) ; б) .
24. а) ; б) .
25. а) ; б) .
26. а) ; б) .
27. а) ; б) .
28. а) ; б) .
29. а) ; б) .
30. а) ; б) .

Задание 2. Решить системы методом Гаусса:

1. а) ; б) ;
в) ; г) .
2. а) ; б) ;
в) ; г) ;
3. а) ; б) ;
в) ; г) .
4. а) ; б) ;
в) ; г) .
5. а) ; б) ;
в) ; г) .
6. а) ; б) ;
в) ; г) .
7. а) ; б) ;
в) ; г) .
8. 8. а) ; б) ;
в) ; г) .
9. а) ; б) ;
в) ; г) .
10. а) ; б) ;
в) ; г) .
11. а) ; б) ;
в) ; г) .
12. а) ; б) ;
в) ; г) .
13. а) ; б) ;
в) ; г) .
14. а) ; б) ;
в) ; г) .
15. а) ; б) ;
в) ; г) .
16. а) ; б) ;
в) ; г) .
17. а) ; б) ;
в) ; г) .
18. а) ; б) ;
в) ; г) ;
19. а) ; б) ;
в) ; г) .
20. а) ; б) ;
в) ; г) .
21. а) ; б) ;
в) ; г) .
22. а) ; б) ;
в) ; г) .
23. а) ; б) ;
в) ; г) .
24. а) ; б) ;
в) ; г) .
25. а) ; б) ;
в) ; г) .
26. а) ; б) ;
в) ; г) .
27. а) ; б) ;
в) ; г) .
28. а) ; б) ;
в) ; г) .
29. а) ; б) ;
в) ; г) .
30. а) ; б) ;
в) ; г) .

 

 

Задание 3. Решить системы однородных уравнений:

1. а) ; б) .
2. а) ; б) .
3. а) ; б) .
4. а) ; б) .
5. а) ; б) .
6. а) ; б) .
7. а) ; б) .
8. а) ; б) .
9. а) ; б) .
10. а) ; б) .
11. а) ; б) .
12. а) ; б) .
13. а) ; б) .
14. а) ; б) .
15. а) ; б) .
16. а) ; б) .
17. а) ; б) .
18. а) ; б) .
19. а) ; б) .
20. а) ; б) .
21. а) ; б) .
22. а) ; б) .
23. а) ; б) .
24. а) ; б) .
25. а) ; б) .
26. а) ; б) .
27. а) ; б) .
28. а) ; б) .
29. а) ; б) .
30. а) ; б) .

 

Образец выполнения контрольной работы № 2

“СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ”

1) Решить систему матричным способом: .

Решение. Пусть . Тогда данную систему можно записать в виде матричного уравнения . Решаем его, домножая слева на обратную матрицу: Отсюда получаем решение . Найдем сначала .

.

,значит ).

Составляем обратную матрицу

Найдем

,

т. е. .

Проверка. Подставим найденное решение в исходную систему: (истина), (истина), (истина).

Ответ: .

 

 

2) Решить систему методом Крамера.

Возьмем эту же систему и решим её с помощью определителей.

(найден выше).
, запишем определитель системы

 

Заменим в столбец коэффициентов при на столбец правых частей

.

Заменим в столбец коэффициентов при на столбец правых частей

 

Заменим в столбец коэффициентов при на столбец правых частей

 

.

 

По формулам Крамера получаем решение .

Ответ: .

 

3) Решить системы методом Гаусса:

а)

Выписываем расширенную матрицу и с помощью элементарных преобразований приводим ее или к треугольному виду, или к виду трапеции (как получится).

(3)

x y z

: (-1) : (-6)
.

.

Так как число неизвестных и равно рангу системы, система имеет единственное решение. По полученной матрице восстанавливаем систему уравнений. Идя снизу вверх, получаем это решение: .

Из последнего уравнения 3, с помощью второго находим Подставляя в первое уравнение найденные и находим

 

Ответ: .

 

б)

(-1)

Следовательно, по теореме Кронекера-Капелли система несовместна (т. е. не имеет решения). Выпишем уравнение, соответствующее последней строке полученной матрицы: , что невозможно.

Ответ: система не имеет решения.

 

в)

Записываем расширенную матрицу:

 

: (-1) .

 

. Отсюда следует, что система совместна.

Число неизвестных .Следовательно, система имеет бесконечное множество решений: . Отсюда система имеет одну свободную переменную, пусть это будет , тогда – базисные (базисных неизвестных столько, каков ранг системы, т. е. сколько ненулевых строк остается в последней матрице).

Запишем систему, соответствующую полученной матрице: .

Следовательно, идя снизу вверх, выражаем базисные неизвестные через свободную . Из второго уравнения выражаем из первого уравнения

Общее решение: .

Из общего решения можно получить любое частное решение. Пусть , тогда получим частное решение:

Частное решение: .

Выполним проверку общего решения. Для этого подставим найденные выражения в уравнения исходной системы:

 

Ответ: .

 


Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.032 сек.)