АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Теорема о скоростях точек

Читайте также:
  1. S-M-N-теорема, приклади її використання
  2. Автоматизация измерений соответственных точек на стереопаре снимков.
  3. Б1 1.Системы линейных алгебраических уравнений (СЛУ). Теорема Кроникера-Капелли. Общее решение СЛУ.
  4. Базисный минор и ранг матрицы. Теорема о базисном миноре
  5. Билет 22Понятие евклидова пространства, неравенство Коши-Буняковского. Теорема Кронекера Капелли.
  6. Билет 5 Теорема Безу и следствия из неё. Основная теорема алгебры.
  7. ВЕДЕНИЕ КАРТОЧЕК РАСЧЕТОВ ПЛАТЕЛЬЩИКОВ С БЮДЖЕТОМ (РСБ)
  8. ВЕКТОРЫ ЛИНЕЙНЫХ СКОРОСТИ И УСКОРЕНИЯ ТОЧЕК ТЕЛА ПРИ ВРАЩЕНИИ
  9. Виды особых точек
  10. Внешние эффекты (экстерналии). Теорема Коуза.
  11. Внешние эффекты трансакционные издержки. Теорема Коуза
  12. Внешние эффекты, их виды и последствия. Теорема Коуза

Рис.11 Рис. 12

2. Ускорения точек тела. Для нахождения ускорения точки М воспользуемся формулами

В нашем случае ρ=h. Подставляя значение v в выражения aτ и an, получим:

или окончательно:

Касательная составляющая ускорения aτ направлена по каса­тельной к траектории (в сторону движения при ускоренном вра­щении тела и в обратную сторону при, замедленном); нормальная составляющая an всегда направлена по радиусу МС к оси вращения (рис.12). Полное ускорение точки М будет

Отклонение вектора полного ускорения от радиуса описываемой точкой окружности определяется углом μ, который вычисляется по формуле

Подставляя сюда зна­чения aτ и an, получаем

Так как ω и ε имеют в данный момент времени для всех точек тела одно и то же значение, то ускорения всех точек вращающегося твердого тела пропорциональ­ны их расстояниям от оси вращения и образуют в данный момент времени один и тот же угол μ с радиусами описываемых ими окруж­ностей. Поле ускорений точек вращающегося твердого тела имеет вид, показанный на рис.14.

 

Рис.13 Рис.14

 

3. Векторы скорости и ускорения точек тела. Чтобы найти выражения непосредственно для векторов v и a, проведем из произвольной точки О оси АВ радиус-вектор точки М (рис. 13). Тогда h=r∙sinα и по формуле

Таким образом, модуль векторного произведения равен модулю скорости точки М. Направления векторов и v тоже совпадают (оба они перпендикулярны плоскости ОМВ) и размерно­сти их одинаковы. Следовательно, - формула Эйлера, т.е. вектор скорости любой точки вращающегося тела равен векторному произведению угловой скорости тела на радиус-вектор этой точки.

 

7. Плоскопараллельное движение. Теорема о скоростях точек плоской фигуры.

Плоскопараллельным (плоским) движением (ППД) твердого тела называется такое движение, при котором все точки тела перемещаются в плоскостях параллельных некоторой неподвижной плоскости (рисунок 2.11).

 

При таком движении точки, лежащие в разных плоскостях на одном отрезке, перпендикулярном неподвижной плоскости (например M1M2 ) совершают одинаковые движения.

 

 

 

Теорема о скоростях точек



Скорость любой точки плоской фигуры равна геометрической сумме скорости выбранного полюса и скорости точки во вращательном движении фигуры вокруг полюса.

Производная от вектора AM, постоянного по величине и переменного по направлению, численно равна скорости точки М при вращении ее вокруг точки А.

 

 

 

Рис. 1.3

 

Вектор VMA= ω⋅AM перпендикулярен отрезку АМ.

Численную величину скорости точки М можно получить, если воспользоваться теоремой косинусов

 

 

или спроецировать векторное равенство (1) на выбранные оси координат

 

 

 

8. Мгновенный центр скоростей и его применение при решении задач.

Мгнове́нный центр скоросте́й — при плоскопараллельном движении абсолютно твёрдого тела точка, связанная с этим телом, которая обладает следующими свойствами: а) её скорость в данный момент времени равна нулю; б) относительно неё в данный момент времени вращается тело. Она существует в любой момент времени, но её положение меняется со временем за исключением одного случая — вращательного движения.

Теорема Эйлера-Шаля доказывает, что любое непоступательное перемещение фигуры в плоскости можно осуществить поворотом вокруг некоторого неподвижного центра. В соответствии с этим легко доказывается, что при плоско-параллельном движении в каждый момент времени существует точка, неизменно связанная с плоской фигурой, скорость которой в этот момент равна нолю. Эту точку называют мгновенным центром скоростей (МЦС). В учебниках эту точку пишут с индексом V, например PV, CV.

При определении положения МЦС скорость любой точки может быть записана:VM=VCV+VMCV , где точка СV выбрана за полюс. Поскольку это МЦС и VCV=0 , то скорость любой точки определяется как скорость вращении вокруг мгновенного центра скоростей.

 

 

Из рис. 1.5 видно, что мгновенный центр скоростей лежит в точке пересечения перпендикуляров, проведенных к скоростям точек, при этом всегда справедливо соотношение

‡агрузка...

 

 

 

 

Рис. 1.5

 

На нижеприведенных рисунках показаны примеры определения положения мгновенного центра скоростей и приведены формулы для расчета скоростей точек.

 

Для рисунка 1.6:

1. СV совпадает с точкой В VB=0. Шатун АВ вращается вокруг точки В

 

2.

 

3. МЦС лежит в «бесконечности»

 

 

4.

 

Рис. 1.6

 

 

 

Рис. 1.7

 

 

Рис. 1.8

 

здесь VB II VA

В этом случае МЦС находится в “бесконечности” , т.е

 

 

 

Рис. 1.9

 

 

Формулы справедливы при отсутствии проскальзывания в точке СV.

 

 

 

 

 

 

Рис. 1.10

 

9. Теорема об ускорениях точек плоской фигуры.

Покажем, что ускорение любой точки М плоской фигуры (так же, как и скорость) складывается из ускорений, которые точка получает при поступательном и вращательном движениях этой фигуры. Положение точки М по отношению к осям Оxy (см.рис.30) определяется радиусом-вектором где . Тогда

В правой части этого равенства первое слагаемое есть ускорение полюса А, а второе слагаемое определяет ускорение , которое точка м получает при вращении фигуры вокруг полюса A. следовательно,

.

Значение , как ускорения точки вращающегося твердого тела, определяется как

,

где и - угловая скорость и угловое ускорение фигуры, а - угол между вектором и отрезком МА (рис.41).

Таким образом, ускорение любой точки М плоской фигуры геометрически складывается из ускорения какой-нибудь другой точки А, принятой за полюс, и ускорения, которое точка М получает при вращении фигуры вокруг этого полюса. Модуль и направление ускорения , находятся построением соответствующего параллелограмма (рис.23).

Однако вычисление с помощью параллелограмма, изображен­ного на рис.23, усложняет расчет, так как предварительно надо бу­дет находить значение угла , а затем - угла между векторами и , Поэтому при решении задач удобнее вектор заменять его касательной и нормальной составляющими и пред­ставить в виде

.

При этом вектор направлен перпендикулярно АМ в сторону вращения, если оно ускоренное, и против вращения, если оно замедленное; вектор всегда направлен от точки М к полюсу А (рис.42). Численно же

.

Если полюс А движется не прямолинейно, то его ускорение мо­жно тоже представить как сумму касательной и нормальной составляющих, тогда

.

 

Рис.41 Рис.42

 

Наконец, когда точка М движется криволинейно и ее траекто­рия известна, то можно заменить суммой .

 

10. Сложное движение точки. Теорема о сложении скоростей.


1 | 2 | 3 |


При использовании материала, поставите ссылку на Студалл.Орг (0.025 сек.)