АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Скорости и ускорения точек вращающегося тела

Читайте также:
  1. Абсолютно неупругий удар. Абсолютно упругий удар. Скорости шаров после абсолютно упругого центрального удара.
  2. Автоматизация измерений соответственных точек на стереопаре снимков.
  3. Антитела. Строение, свойства, продукция.
  4. В) скорости реакции от концентрации реагирующих веществ,
  5. ВЕДЕНИЕ КАРТОЧЕК РАСЧЕТОВ ПЛАТЕЛЬЩИКОВ С БЮДЖЕТОМ (РСБ)
  6. Вектор скорости точки
  7. Вектор ускорения точки
  8. Векторные формулы для кинематических характеристик вращающегося твердого тела
  9. ВЕКТОРЫ ЛИНЕЙНЫХ СКОРОСТИ И УСКОРЕНИЯ ТОЧЕК ТЕЛА ПРИ ВРАЩЕНИИ
  10. Виды особых точек
  11. Влияние нагрева и скорости охлаждения углеродистой стали на ее структуру
  12. Влияние скорости охлаждения на формирование структуры

Установив характеристики движения всего тела в целом, перейдем к изучению движения отдельных его точек.

1. Скорости точек тела. Рассмотрим какую-нибудь точку М твердого тела, находящуюся на расстоянии h от оси вращения (см. рис.9). При вращении тела точка М будет описывать окружность радиуса h, плоскость которой перпендикулярна оси вращения, а центр С лежит на самой оси. Если за время dt проис­ходит элементарный поворот тела на угол dφ, то точка М при этом совершает вдоль своей траектории элементарное перемещение ds=hdφ. Тогда числовое значение скорости точки будет равно отно­шению ds к dt, т.е

Скорость в отличие от угловой скорости тела называют иногда еще линейной или окружной скоростью точки М.

Таким образом, числовое значение скорости точки вращающегося твердого тела равно произведению угловой скорости тела на расстоя­ние от этой точки до оси вращения.

Направлена скорость по касательной к описываемой точкой окружности или перпендикулярно плоскости, проходящей через ось вращения и точку М.

Так как для всех точек тела имеет в данный момент времени одно и то же значение, то скорости точек вращающегося тела пропорциональны их расстояниям от оси вращения.

 

Рис.11 Рис. 12

2. Ускорения точек тела. Для нахождения ускорения точки М воспользуемся формулами

В нашем случае ρ=h. Подставляя значение v в выражения aτ и an, получим:

или окончательно:

Касательная составляющая ускорения aτ направлена по каса­тельной к траектории (в сторону движения при ускоренном вра­щении тела и в обратную сторону при, замедленном); нормальная составляющая an всегда направлена по радиусу МС к оси вращения (рис.12). Полное ускорение точки М будет

Отклонение вектора полного ускорения от радиуса описываемой точкой окружности определяется углом μ, который вычисляется по формуле

Подставляя сюда зна­чения aτ и an, получаем

Так как ω и ε имеют в данный момент времени для всех точек тела одно и то же значение, то ускорения всех точек вращающегося твердого тела пропорциональ­ны их расстояниям от оси вращения и образуют в данный момент времени один и тот же угол μ с радиусами описываемых ими окруж­ностей. Поле ускорений точек вращающегося твердого тела имеет вид, показанный на рис.14.



 

Рис.13 Рис.14

 

3. Векторы скорости и ускорения точек тела. Чтобы найти выражения непосредственно для векторов v и a, проведем из произвольной точки О оси АВ радиус-вектор точки М (рис. 13). Тогда h=r∙sinα и по формуле

Таким образом, модуль векторного произведения равен модулю скорости точки М. Направления векторов и v тоже совпадают (оба они перпендикулярны плоскости ОМВ) и размерно­сти их одинаковы. Следовательно, - формула Эйлера, т.е. вектор скорости любой точки вращающегося тела равен векторному произведению угловой скорости тела на радиус-вектор этой точки.

Пример 1.Маятник OM качается в вертикальной плоскости так, что φ=0,5sin2t. Длина OM=l=1м. (рис. 15).

Рис.15

 

Решение. Маятник вращается вокруг горизонтальной оси О, перпендикулярной вертикальной плоскости. Угловая скорость угловое ускорение

Например, при t=1 с, φ=0,5sin2=0,45 рад≅26°; ω=cos2=-0,42 c-1 (вращение по часовой стрелке); ε=-2sin2=-1,82 c-2 (угловое уско­рение направлено также по часовой стрелке). Вращение в этом положении ускоренное.

Скорость точки M: vM=lω=1∙0,42=0,42 м∙с-1 (определя­ется модуль скорости). Направлен вектор скорости соответственно направлению угловой скорости – в сторону вращения.

.

 

Нормальное ускорение an=lω2=1∙0,422=0,176 м∙с-2, касательное ускорение aτ=lε=1∙1,82=1,82 м∙с-2. (Определён опять модуль вектора ускорения. Направлен вектор вниз, как указывает угловое ускорение).

Величина полного ускорения точки

 


 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |


При использовании материала, поставите ссылку на Студалл.Орг (0.008 сек.)