АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

По типу усилительных элементов различают: ламповые и транзисторные усилители

Читайте также:
  1. Алгоритмы упорядочивания элементов в массивах
  2. Биогеохимические круговороты основных химических элементов в биосфере
  3. В зависимости от наличия тех или иных морфологических элементов сыпи выделяют различные типы дермального ангиита.
  4. Влияние легирующих элементов на структуру и механические свойства сталей
  5. Внешняя среда организации: значение, определение, взаимосвязь элементов.
  6. Возможности использования элементов налоговой политики и налогового учета организации для целей оптимизации налоговых потоков
  7. Вынос основных элементов питания с тонной основной и соответствующим количеством побочной продукции, кг (минеральные почвы)
  8. Глава 4. ОСНОВЫ КОМПОНОВКИ ЭЛЕМЕНТОВ В ЛОГИЧЕСКИХ СХЕМАХ И ОСОБЕННОСТИ ПРИМЕНЕНИЯ СИСТЕМНЫХ СООТНОШЕНИЙ
  9. Групповые названия элементов
  10. Дать характеристику одного из элементов - неметаллов (хлора, серы, фосфора, азота, углерода, кремния) (все по выбору).
  11. Действительно возможный урожай, вынос элементов урожаем, запасы пит.веществ в почве, коэффициент использования пит.веществ из почвы и удобрений
  12. Добавление и удаление элементов диаграммы

По назначению различают: усилители напряжения, усилители тока и усилит ли мощности.

По диапазону усиливаемых частот различают: усилители низкой частоты (УНЧ) 20 Гц–20 кГц, усилители высокой частоты (УВЧ) от 100 кГц и выше; усилители постоянного тока, усилители медленно изменяющихся колебаний в диапазоне частот от 0 до 20 Гц.

По числу усилительных каскадов различают: однокаскадные и многокаскадные усилители. Каскад усилителя – это устройство, состоящее из одного активного элемента и пассивных вспомогательных элементов (резисторы, емкости и т.п.).

§ По типу связей между каскадами различают: резистивно–емкостную связь, трансформаторную и непосредственную (гальваническую).

Любой усилитель имеет две пары зажимов: входные и выходные. К входным зажимам подключают слабый сигнал. В выходной цепи выделяют усиленный сигнал.

1. источник слабого входного сигнала;

2. усилитель;

3. источник энергии, за счет которой усиливается сигнал;

4. нагрузка, в которой выделяется усилительный сигнал.

Основным параметром, характеризующим работу усилителя, является коэффициентом усиления (К), который показывает, во сколько раз сигнал в выходной цепи отличается от сигнала входной цепи.

 


8. Схемы включения транзистора

 

Различают три схемы включения транзисторов: с общей базой, с общим коллектором, с общим эмиттером. Схема включения с общей базой – это значит, что база является общим электродом для входной цепи (ЭБ) и выходной цепи (КБ). Основным параметрами характеризующими работу усилителя, является коэффициент усиления.

 


Схема с общей

базой

,

т.е. по напряжению сигнал усиливается.

,

т.к. Iэ=Iб+Iк

т.е. по току сигнал ослабляется.

небольшое усиление мощности

 
 



Схема с общим

коллектором

 

 

 

 
 

Схема с общим эмиттером

 

 

 


Схема включения с общим эмиттером нашла наибольшее применение, т.к. позволяет получить усиление входного сигнала по напряжению, по мощности, по току.

 

9. Тиристор

 

Тиристор – это четырехслойный полупроводниковый прибор с тремя р-n переходами, обладающий вентильными свойствами. Изготавливается из кремния, бывает только плоскостным. Различают два вида тиристоров р-n-р-n и n-р-n-р. Тиристор с двумя выводами от двух крайних областей, называется динистором.



 

 

В обратном направлении (при малых напряжениях) тиристор не проводит ток, т.к. переходы П1 и П3 закрыты. При включении прямого напряжения, переходы П1 и П3 открываются, и через тиристор проходит малый обратный ток, т.к. переход П2 закрыт. При увеличении прямого напряжения, напряженность электрического поля вблизи перехода П2 увеличивается, и при некотором напряжении возникает лавинный пробой перехода П2. В результате чего сопротивление перехода П2 резко падает и через тиристор начинает протекать ток, обусловленный движением основных носителей. Тиристор отличается от полупроводникового диода лишь тем, что он начинает проводить ток только при достаточно больших прямых напряжениях. В управляемом тиристоре сделан третий вывод от области, прилежащей к переходу П2.

Подавая импульс тока на управляющий электрод (УЭ), напряженность электрического поля вблизи П2 увеличивается и, значит, при меньших значениях прямого напряжения, переход П2 открывается. Изменяя величину тока, подаваемого на управляющий электрод, можно управлять моментом включения тиристора.

Тиристоры применяются:

Ø в схемах управляемых выпрямителей;

Ø в устройствах автоматики в качестве «ключей».

 
 

ТЕМА: «Фотоэлектронные приборы»

 

Фотоэлектронные приборы – это приборы, у которых под действием световой энергии изменяются электрические свойства: проводимость, сопротивление, ЭДС.

По принципу действия фотоэлектронные приборы делятся на приборы:

ü работа, которых основана на внешнем фотоэффекте;

ü работа, которых основана на внутреннем фотоэффекте.

Внешний фотоэффект (фотоэлектронная эмиссия) – явление выхода электронов из металла, при его освещении.

‡агрузка...

Внутренний фотоэффект – явления увеличения концентрации свободных носителей внутри материала при его освещении. Внутренний фотоэффект наблюдается в полупроводниках, диэлектриках.

 


10. Фотоэлементы с внешним

фотоэффектом

 

Устройство:

ФЭ состоит из стеклянного баллона, в котором создан вакуум, или наполненного газом, внутренняя полусфера которого покрыта светочувствительным слоем (фотокатодом) и анода, изготовленного из никелевой проволоки в виде кольца.

Если фотоэлемент не освещен, то в баллоне нет свободных носителей и тока тоже нет. При освещении ФЭ с поверхности фотокатода вылетают электроны, которые под действием электрического поля притягиваются к аноду, создавая в цепи фототок. Величина фототока зависит от светового потока и величины подводимого напряжения.

Фотоэлементы применяются в различных схемах фотореле:

 

Ø в устройстве ввода в ЭВМ;

Ø фотоблокировка в прессах;

Ø управление включением и выключением освещения;

Ø в метро: в турникетах и электронных часах, измеряющих интервал движения для контроля обрывности нитей;

Ø в ткацких станках;

Ø для подсчета количества и определения качества продукции.

 

11. Фоторезистор

 

Фоторезистор – прибор, у которого под действием света изменяется электрическое сопротивление. Представляет собой диэлектрическое основание, на которое наносят тонкий слой светочувствительного полупроводника, два электрода с выводами помещают в корпус. Если ФР не освещен, то через него проходит небольшой темновой ток. При освещении ФР ковалентные связи разрушаются, появляются свободные электроны и дырки и сопротивление ФР уменьшается. Применяется в схемах фотореле.


12. Солнечные фотоэлементы (фотодиоды)

 

Фотодиод – это полупроводниковый фотоэлемент, у которого под действием света наводится фото-э.д.с. Т.е световая энергия непосредственно преобразуется в электрическую. Работа фотодиода основана на возникновении фото-э.д.с. в области контакта двух полупроводников р- и n-типа (р-n перехода).

 

Применяется в качестве источника электрической энергии для питания: космических кораблей, электромобилей, калькуляторов, часов и т.д.

 


1 | 2 | 3 | 4 | 5 |


При использовании материала, поставите ссылку на Студалл.Орг (0.162 сек.)