АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Язык и особенности исследовательских моделей

Читайте также:
  1. I. ГИМНАСТИКА, ЕЕ ЗАДАЧИ И МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ
  2. III. Психические свойства личности – типичные для данного человека особенности его психики, особенности реализации его психических процессов.
  3. IV. Особенности правового регулирования труда беременных женщин
  4. V. Особенности развития предпринимательства
  5. Аграрная реформа 1861 г., ее механизм и особенности проведения в белорусских губерниях.
  6. Агрегатный индекс цен: особенности построения с учетом разных весов
  7. Акты применения права, их особенности и виды
  8. Аналіз та синтез моделей систем
  9. АНАТОМО-ФИЗИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ДЕТЕЙ МЛАДШЕГО ШКОЛЬНОГО ВОЗРАСТА
  10. Анатомо-физиологические особенности кожи, подкожной клетчатки, лимфатических узлов. Методика обследования. Семиотика.
  11. Анатомо-физиологические особенности костно-мышечной системы. Методы обследования. Семиотика.
  12. Анатомо-физиологические особенности новорожденного.

Модели являются достаточно универсальным инструментом исследования. При разработке исследовательских моделей нужно знать язык современных моделей, а также основные требования к процессу их разработки.

Как и к любому инструменту, используемому в технологическом процессе исследования, к моделям предъявляются определенные требования. Получить инструмент желаемого качества можно только при соблюдении определенных правил в процессе их создания. Для разработки этих правил полезно рассмотреть и изучить процесс разработки моделей, опыт, накопленный в процессе реального моделирования.

Как уже отмечалось, модель - упрощенное представление объекта, используемое для исследования возможных состояний объекта в будущем и(или) путей их достижения.

Модели используют с целью снижения затрат и обеспечения безопасности исследований. Модели бывают: предметные, знаковые, математические. Математические модели бывают двух видов: аналитические, имитационные. По физическим принципам реализации модели делятся на математические, полунатурные, натурные.

Язык современных моделей включает следующие формы выражения данных об объекте моделирования /6,1/:

1) словесное описание - наиболее простой и неформальный способ выражения данных. Он легко доступен для понимания, однако может быть неоднозначным, а поэтому имеет ограниченное применение лишь на самых ранних этапах исследований, разработки объектов и их моделей;

2) графическое представление в виде кривых, номограмм, чертежей. Этот способ задания данных об объекте или процессе часто является вспомогательным и используется в совокупности с другими;

3) блок - схемы, матрицы решений - один из наиболее распространенных способов задания данных, особенно их структурной или логической части;

4) математическое описание - это описание модели в виде формул и математических операций над переменными. Сюда же относят алгоритмическое описание, которое может использоваться для разработки имитационной модели и электронного моделирования объекта, не имеющего аналитического описания.

Каждый тип моделей в разной степени использует соответствующую форму выражения данных об объекте моделирования (системе или процессе). Например, при построении кибернетических моделей должны быть аналитически описаны входы и выходы объекта, их взаимозависимости, но не используют структурные схемы, блок-схемы и т.п.



Законы диалектики исследования утверждают, что модель и правила получения этих свойств модели могут рассматриваться в их взаимной связи. Важно, что при разработке модели должны соблюдаться следующие принципы.

1. Принцип компромисса между ожидаемой точностью результатов моделирования и сложностью модели. Возможность усложнения модели ограничивается ее стоимостью и временем создания. Точность определяется требованиями исследования и располагаемыми ресурсами. В процессе создания модели отыскивается разумный компромисс с использованием критерия «точность модели / затраты на создание модели».

2. Баланс точности, который выражается в следующем: соразмерность систематической погрешности моделирования и случайной погрешности в задании параметров описания (исходная неопределенность), т.е. это требование устанавливает соответствие между точностью исходных данных и точностью модели; соответствие точности отдельных элементов модели (точность модели в целом определяется точностью наименее точного элемента модели); соответствие систематической погрешности модели и случайной погрешности при интерпретации и усреднении результатов.

Из требования баланса точности следует практическое правило, которое отражает тот факт, что при сравнении вариантов системы в процессе исследования желательно стремиться к параллельному моделированию конкурирующих вариантов проектируемой системы с оценкой разности или отношения соответствующих показателей. Эти принципы могут рассматриваться в качестве обобщенных предварительных показателей правильности составления модели. Однако для реализации этих требований в исследовании должна существовать система элементов модели, в достаточной степени гибкая, которая позволяла бы осуществить множество вариантов для поиска компромисса.

3. Разнообразие элементов модели, достаточное для проведения конкретных исследований.

‡агрузка...

4. Наглядность модели для исследователя и потребителя. Согласно этому принципу, при прочих равных условиях модель, которая привычна, удобна, построена на общепринятых терминах обеспечивает, как правило, более значительные результаты, чем менее удобная и наглядная.

5. Блочное представление модели. Связано с декомпозицией системы. Реализация этого принципа сводится к следующим шагам по пути перехода от полного описания к упрощенной модели. Первый шаг - находят группу тесно связанных элементов наиболее полной модели, которые можно было бы описать аналитически или моделировать автономно. Второй шаг - определяют, существенное или несущественное значение имеет тот или иной блок для решения данной задачи. В соответствии с ответом на этот вопрос блок можно исключить из рассмотрения, заменив связью или упрощенным блоком, либо оставить, если он существенен. При реализации принципа блочного представления следует соблюдать следующие правила:

• обмен информацией между блоками должен быть минимальным;

• несущественным, подлежащим удалению считают блок модели, мало влияющий на интерпретацию результатов моделирования;

• удаляя конечные блоки, составляющие описания взаимодействия с потребителями, необходимо отразить интересы потребителей при формировании критерия интерпретации моделирования. Эти интересы хорошо формулируются в полной модели, отражающей все элементы описания системы и технические требования к ней;

• блок модели, осуществляющий взаимодействие с исследуемой частью системы, в общем случае можно заменить множеством упрощенных эквивалентов, не зависящих от исследуемой части, причем моделирование проводится в нескольких вариантах по каждому упрощенному эквиваленту. При этом необходимо учитывать прямые воздействия блоков на исследуемую часть и обратные воздействия связей в системе;

• при упрощении блока, воздействующего на исследуемую часть системы, следует сопоставить возможности прямого упрощения замкнутого контура без разрыва обратной связи. Для этого блок заменяют вероятностным эквивалентом с оценкой его статистических характеристик, получаемых путем автономного исследования упрощенного блока;

• блок может быть заменен воздействиями, наихудшими по отношению к исследуемой части системы.

В ряде случаев целесообразно выделять для автономного исследования пересекающиеся части исследуемой системы, которые функционируют на различных этапах или в различных режимах работы. При таком моделировании процесс рассекают во времени. Важно, что одна модель обеспечивает входными воздействиями последующие. Например, жизненный цикл технической системы можно представить совокупностью самостоятельных моделей: научно-исследовательские работы, опытно-конструкторские разработки, производство, эксплуатация, утилизация. При выделении блоков по принципу различных режимов работы,

рассматриваются частичные модели, отражающие работу системы при различных возмущающих и управляющих воздействиях.

6. Специализация моделей - это принцип, подтверждающий целесообразность использования относительно малых, условных подмоделей, предназначенных для анализа функционирования системы в узком диапазоне условий, возможность неформального суждения о системе в целом по совокупности частных показателей, полученных на условных моделях. Последовательное объединение элементов описания в блоке создает модель, удобную для программной реализации и экспериментов. Упрощение должно ограничиваться максимально допустимой величиной различия между моделью описания и моделью, определенной с точки зрения интерпретации результата моделирования. Таким образом, названное различие должно быть несущественным и лежать в некотором поле допуска. Это поле допуска определяется статистическими разбросами результатов, порождаемых ошибкой в параметрах модели, ошибками в исходных данных.

При исследованиях проверку соответствия частной и полной моделей следует вести по сходимости результатов, полученных на моделях возрастающей сложности. В соответствии с этим правилом сначала максимально упрощают модель, потом производится последовательное усложнение модели в пределах допустимых вычислительных ограничений. Эти усложнения сопровождаются экспериментальными исследованиями и проверкой адекватности моделей на каждом из этапов. Различие двух последующих моделей признается несущественным, если оно лежит в поле допуска, определенном погрешностями исходных данных. Для пересчета этих погрешностей допуска на каждом шаге приходится производить многократную оценку влияний погрешностей параметров на показатель оценки результата моделирования. Чем сложнее модель, тем сложнее и сама оценка.

Расчет допусков выполнения производится по наиболее простой модели, включающей все неточные параметры описания. Это правило определяет компромисс между точностью определения допусков и вычислительными сложностями.

Чтобы избежать потерь информации о результатах функционирования системы, можно использовать комбинированную оценку вероятностных характеристик, позволяющих получить интегральную оценку параметров системы по результатам ее испытаний на различных этапах с учетом корреляции этих параметров. Эти методы разработаны В.Н. Пугачевым.

В теории моделирования рекомендуют разрабатывать модель таким образом, чтобы обеспечить робастность - ус-тойчивость результата моделирования к неточности и ошибкам исходных данных. В процессе создания модели необходимо также предусмотреть возможность выполнения самой процедуры проверки ее робастности.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 |


При использовании материала, поставите ссылку на Студалл.Орг (0.185 сек.)