АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Экспертные и обучающиеся системы

Читайте также:
  1. I. Формирование системы военной психологии в России.
  2. I.СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ. МЕТОД ГАУССА
  3. II. Органы и системы эмбриона: нервная система и сердце
  4. II. Цель и задачи государственной политики в области развития инновационной системы
  5. II. Экономические институты и системы
  6. III. Мочевая и половая системы
  7. III. Органы и системы эмбриона: пищеварительная система
  8. IV Структура АИС. Функциональные и обеспечивающие подсистемы
  9. IV. Механизмы и основные меры реализации государственной политики в области развития инновационной системы
  10. IV. Органы и системы эмбриона: дыхательная и др. системы
  11. MathCad: способы решения системы уравнений.
  12. S-элементы I и II групп периодической системы Д.И.Менделеева.

Экспертные системы являются одним из основных приложений искусственного интеллекта. Искусственный интеллект – это один из разделов информатики, в котором рассматриваются задачи аппаратного и программного моделирования тех видов человеческой деятельности, которые считаются интеллектуальными.

Результаты исследований по искусственному интеллекту используются в интеллектуальных системах, которые способны решать творческие задачи, принадлежащие конкретной предметной области, знания о которой хранятся в памяти (базе знаний) системы. Системы искусственного интеллекта ориентированы на решение большого класса задач, к которым относятся так называемые частично структурированные или неструктурированные задачи (слабо формализуемые или неформализуемые задачи).

Информационные системы, используемые для решения частично структурированных задач, подразделяются на два вида:

· Создающие управленческие отчеты (выполняющие обработку данных: поиск, сортировку, фильтрацию). Принятие решения осуществляется на основе сведений, содержащихся в этих отчетах.

· Разрабатывающие возможные альтернативы решения. Принятие решения сводится к выбору одной из предложенных альтернатив.

Информационные системы, разрабатывающие альтернативы решений, могут быть модельными или экспертными:

· Модельные информационные системы предоставляют пользователю модели (математические, статистические, финансовые и т.д.), которые помогают обеспечить выработку и оценку альтернатив решения.

· Экспертные информационные системы обеспечивают выработку и оценку возможных альтернатив пользователем за счет создания систем, основанных на знаниях, полученных от специалистов - экспертов.

Экспертные системы - это программы для компьютеров, аккумулирующие знания специалистов - экспертов в конкретных предметных областях, которые предназначены для получения приемлемых решений в процессе обработки информации. Экспертные системы трансформируют опыт экспертов в какой-либо конкретной отрасли знаний в форму эвристических правил и предназначены для консультаций менее квалифицированных специалистов.

Известно, что знания существуют в двух видах: коллективный опыт, личный опыт. Если предметная область представлена коллективным опытом (например, высшая математика), то эта предметная область не нуждается в экспертных системах. Если в предметной области большая часть знаний является личным опытом специалистов высокого уровня и эти знания являются слабоструктурированными, то такая область нуждается в экспертных системах. Современные экспертные системы нашли широкое применение во всех сферах экономики.



База знаний является ядром экспертной системы. Переход от данных к знаниям является следствием развития информационных систем. Для хранения данных применяются базы данных, а для хранения знаний – базы знаний. В базе данных, как правило, хранятся большие массивы данных с относительно небольшой стоимостью, а в базах знаний хранятся небольшие по объему, но дорогие информационные массивы.

База знаний – это совокупность знаний, описанных с использованием выбранной формы их представления. Наполнение базы знаний является одной из самых сложных задач, которая связана с выбором знаний их формализацией и интерпретацией.

Экспертная система состоит из:

· базы знаний (в составе рабочей памяти и базы правил), предназначенной для хранения исходных и промежуточных фактов в рабочей памяти (ее еще называют базой данных) и хранения моделей и правил манипулирования моделями в базе правил

· решателя задач (интерпретатора), который обеспечивает реализацию последовательности правил для решения конкретной задачи на основе фактов и правил, хранящейся в базах данных и базах знаний

· подсистемы пояснения, позволяет пользователю получить ответы на вопрос: «Почему система приняла такое решение?»

· подсистемы приобретения знаний, предназначенной как для добавления в базу знаний новых правил, так и модификации имеющихся правил.

· интерфейса пользователя, комплекса программ, реализующих диалог пользователя с системой на стадии ввода информации, и получения результатов.

Экспертные системы отличаются от традиционных систем обработки данных тем, что в них, как правило, используется символьный способ представления, символьный вывод и эвристический поиск решений. Для решения слабо формализуемых или неформализуемых задач более перспективными являются нейронные сети или нейрокомпьютеры.

‡агрузка...

Основу нейрокомпьютеров составляют нейронные сети – иерархические организованные параллельные соединения адаптивных элементов – нейронов, которые обеспечивают взаимодействие с объектами реального мира так же, как и биологическая нервная система.

Большие успехи использования нейросетей достигнуты при создании самообучающихся экспертных систем. Сеть настраивают, т.е. обучают, пропуская через нее все известные решения и добиваясь получения требуемых ответов на выходе. Настройка состоит в подборе параметров нейронов. Часто используют специализированную программу обучения, которая занимается обучением сети. После обучения система готова к работе.

Если в экспертную систему ее создатели предварительно закладывают знания в определенной форме, то в нейронных сетях неизвестно даже разработчикам, как формируются знания в ее структуре в процессе обучении и самообучении, т.е. сеть представляет собой «черный ящик».

Нейрокомпьютеры, как системы искусственного интеллекта, являются весьма перспективными и могут бесконечно совершенствоваться в своем развитии. В настоящее время системы искусственного интеллекта в форме экспертных систем и нейронных сетей находят широкое применение при решении финансово – экономических проблем.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 |


При использовании материала, поставите ссылку на Студалл.Орг (0.006 сек.)