АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ТРИ ПРОБЛЕМЫ КОЭФФИЦИЕНТА ШАРПА

Читайте также:
  1. A.способ разделения веществ, основанный на различии в их коэффициентах распределения между двумя фазами
  2. C. порядок расчета коэффициента чувствительности «b»
  3. D. пропорционально корню квадратному из коэффициента латеральной диффузии.
  4. http://ru.wikipedia.org/wiki/Философия - ВикпедиЯ Свободная энциклопедия (тексты, биографии философов, проблемы)
  5. I. Основные характеристики и проблемы философской методологии.
  6. III. ПРОБЛЕМЫ ПРОДУЦИРОВАНИЯ И ПОНИМАНИЯ РЕЧИ
  7. III. ПРОБЛЕМЫ ПРОДУЦИРОВАНИЯ И ПОНИМАНИЯ РЕЧИ
  8. IV. ПРОБЛЕМЫ ДВУЯЗЫЧИЯ
  9. V1: Глобальные проблемы окружающей среды
  10. XV. ФИЛОСОФСКИЕ ПРОБЛЕМЫ ЧЕЛОВЕКА
  11. А) Брахманистическое понимание проблемы противоположностей
  12. Актуализация проблемы управления персоналом

Хотя коэффициент Шарпа — полезный способ измерений, у него есть некоторое количество потенциальных недостатков**

1. Измерение прибыли в коэффициенте Шарпа. Это изме­рение — среднемесячная доходность (или доходность за другой интер­вал времени), выраженная в процентах годовых, — более приспособ­лено для оценки вероятной результативности в следующем месяце, чем для оценки результативности на протяжении всего года. Например, предположим, что управляющий в течение полугода получает 40% при­были каждый месяц, а другие 6 месяцев приносят ему убытки в разме­ре 30%. Вычисляя годовую прибыль, исходя из среднемесячной, мы получим 60% (12 х 5%). Однако если размер позиции корректируется в соответствии с существующими активами, а так поступает большин­ство управляющих, действительная прибыль за год составила бы -11%. Это произойдет, потому что из каждого доллара активов, имеющихся в начале периода, к концу периода осталось бы только $0,8858((1,40)6 х (0,70)6 = 0,8858).

Как показывает этот пример, если вы озабочены оценкой потенци­альной доходности за расширенный период, а не лишь за следующий месяц или другой интервал, то измерение прибыли, используемое в ко­эффициенте Шарпа, может вести к огромным искажениям. Однако эту проблему можно обойти, используя среднее геометрическое (в проти-

* Здесь подразумевается, что торговые активы постоянны (прибыль изыма-

ется, а убытки восполняются). Другими словами, отсутствует реинвестирова­ние прибыли и снижение величины инвестиций в случае убытков. Вообще го­воря, хотя вычисление прибыли с учетом реинвестиций предпочтительно, это обстоятельство более чем компенсируется существенным преимуществом, со­стоящем в отсутствии необходимости оценивать требования к минимальной величине активов в случае торговой системы. Более того, система с более высокой прибылью, рассчитанной без учета реинвестиций, чаше всего будет демонстрировать и более высокую прибыль с их учетом.

** Этот раздел адаптирован из статьи Дж. Швагера «Alternative to Sharpe Ratio Better Measure of Performance», Futures, p. 57-58, March 1985.


ГЛАВА 21. измерение результативности торговли 739

воположность арифметическому) при расчете средней месячной доход­ности, которую затем выражают в процентах годовых, чтобы получить числитель коэффициента Шарпа. Средняя геометрическая доходность в процентах годовых в точности эквивалентна средней годовой доход­ности с учетом реинвестиций, которая обсуждается позже в этой главе в разделе, посвященном отношению прибыли к максимальному падению стоимости активов.



2. Коэффициент Шарпа не делает различий между коле­-
баниями
стоимости активов вверх и вниз.
Коэффициент Шарпа
измеряет волатильность, а не риск. А это не обязательно одно и то же.

С точки зрения меры риска, используемой в коэффициенте Шар­па, т.е. стандартного отклонения доходности, колебания вверх и вниз рассматриваются как в равной степени плохие. Таким образом, коэф­фициент Шарпа показывал бы в невыгодном свете управляющего, у которого спорадически наблюдались бы резкие увеличения активов, даже если бы падения стоимости активов были малы.

Рис. 21.3 сравнивает гипотетическое движение активов менедже­ра С, где время от времени наблюдается рост активов и отсутствует их падения, и менеджера D, который столкнулся с несколькими падения­ми стоимости активов. Хотя оба управляющих зафиксировали равную прибыль за период в целом, и менеджер D столкнулся с несколькими отрицательными переоценками, в то время как у менеджера С их не было, коэффициент Шарпа оценил бы менеджера D выше (см. табли­цу). Такой исход — прямое следствие того факта, что коэффициент Шарпа оценивает верхнюю волатильность точно так же, как и нижнюю.

3. Коэффициент Шарпа не делает различий между череду­-
ющимися и последовательными убытками.
Мера риска в коэф­-
фициенте Шарпа (стандартное отклонение) не зависит от последова­-
тельности выигрышных и убыточных периодов.

На рис. 21.4 показано гипотетическое изменение стоимости акти­вов с начальной величиной $100 000, управляемых менеджером Е и менеджером F. Каждый из них в обшей сложности зарабатывает $48 000, или $24 000 в год. Однако у менеджера Е месячные доходы в $8000 чередуются с месячными потерями в размере $4000, в то вре­мя как менеджер F сразу теряет $48 000 в первые 12 месяцев и пос­ледовательно зарабатывает $96 000 в течение оставшегося периода.

‡агрузка...

Коэффициент Шарпа этих двух управляющих был бы одним и тем же. Несмотря на этот факт, мало нашлось бы трейдеров, рассматри­вающих деятельность этих менеджеров как эквивалентную с точки зре­ния риска. Фактически все трейдеры согласились бы с тем, что резуль­таты менеджера F подразумевают значительно более высокий уровень риска.



Рисунок 21.3.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 |


Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.011 сек.)