АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

III. Формирование умений и навыков. Упражнения, решаемые на этом уроке, направлены на закрепление умения решать дробные уравнения по алгоритму

Читайте также:
  1. I. Формирование глобального инновационного общества
  2. I. Формирование системы военной психологии в России.
  3. II. Усовершенствование умений
  4. III уровень. Формирование словообразования существительных
  5. III. Формирование портфеля ценных бумаг
  6. III. Формирование умений и навыков.
  7. III. Формирование умений и навыков.
  8. IV уровень. Формирование словоизменения прилагательных
  9. IV этап – формирование галактик
  10. IV. Формирование умений и навыков.
  11. IV. Формирование умений и навыков.

Упражнения, решаемые на этом уроке, направлены на закрепление умения решать дробные уравнения по алгоритму, а также некоторые представляют собой задания повышенной трудности.

1. № 608 (б, г), № 609 (а, б).

Р е ш е н и е

№ 608.

б) ; ОДЗ: х ≠ 3; х ≠ –4.

17 – (х + 4) – х (х – 3);

17 – х – 4 – х2 + 3х = 0;

х2 + 2х + 13 = 0.

D1 = 1 + 13 = 14, D1 > 0, 2 корня.

x1 = = 1 + ; x2 = = 1 – .

г) .

; ОДЗ: x ;

x ≠ – .

Общий знаменатель дробей x(3x – 1)2(3x + 1).

4x(3x – 1) + (3x – 1)(3x + 1) = 4x(3x + 1);

12х2 – 4x + 9х2 – 1 = 12х2 + 4x;

9х2 – 8х – 1 = 0.

a + b + c = 0, значит, x1 = 1, x2 = , то есть x1 = 1, x2 = .

О т в е т: б) 1 – ; 1 + ; г) ; 1.

На этом примере наглядно демонстрируем учащимся необходимость разложения знаменателей на множители для последующего «составления» общего знаменателя.

№ 609.

а) ; ОДЗ: х ≠ –1; х ≠ 0; х ≠ 2.

21х(х – 2) = 16х(х + 1) – 6(х + 1)(х – 2);

21х2 – 42х = 16х2 + 16х – 6х2 + 6х + 12;

21х2 – 42х – 16х2 – 16х + 6х2 – 6х – 12 = 0;

11х2 – 64х – 12 = 0;

D1 = (32)2 – 11 · (–12) = 1024 + 132 = 1156; D1 > 0, 2 корня.

x1 = = 6;

x2 = .

б) .

; ОДЗ: у ≠ 0; у ≠ 3;

у ≠ –3.

2(у + 3) – у(у + 3) – 5 = 0;

2у + 5 – у2 – 3у – 5 = 0;

у2у = 0;

у2 + у = 0;

у (у + 1) = 0;

у = 0 или у = –1.

О т в е т: а) ; 6; б) –1.

2. .

= 0; ОДЗ: а ≠ –3.

7а – 6 – (а + 3) + а2 – 3а + 9 = 0;

7а – 6 – а – 3 + а2 – 3а + 9 = 0;

а2 + 3а = 0;

а (а + 3) = 0;

а = 0 или а = –3.

О т в е т: 0.

3. = 0.

= 0.

Общий знаменатель дробей х(х2 – 1)(х2 + 1).

Домножим обе части уравнения на общий знаменатель:

х2 + 1 + х2 – 1 – 2х = 0;

2 – 2х = 0;

2х (х – 1) = 0;

х = 0 или х = 1.

Если х = 0, то х(х2 – 1)(х2 + 1) = 0.

Если х = 1, то х(х2 – 1)(х2 + 1) = 0.

О т в е т: нет решений.

4. № 611 (б).

Р е ш е н и е

Графиком функции у = является гипербола, расположенная в I и III координатных четвертях. Запишем координаты контрольных точек:

х 0,5
у

Графиком функции у = –х + 6 является прямая, проходящая через точки (0; 6), (6; 0).



О т в е т: х1 ≈ 1,3; х2 ≈ 4,7.

5. Сильным в учебе учащимся можно предложить для решения задания повышенной трудности.

№ 610 (а), № 612.

Р е ш е н и е

№ 610.

а) .

24(–9х2 + 49) = 31(–7х2 + 38),

–216х2 + 1176 + 217х2 – 1178 = 0,

х2 = 2,

х = ± .

Оба корня удовлетворяют уравнению.

О т в е т: ± .


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |


При использовании материала, поставите ссылку на Студалл.Орг (0.009 сек.)