АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Форматы хранения вещественных чисел

Читайте также:
  1. Алгебраїчна форма запису комплексних чисел та дії над комплексними числами, записаними у цій формі
  2. АЛГОРИТМ РЕШЕНИЯ ЗАДАЧ НА ЗАКОН СОХРАНЕНИЯ ИМПУЛЬСА
  3. АЛГОРИТМ РЕШЕНИЯ ЗАДАЧ НА ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ
  4. Блок приема, переработки и хранения информации
  5. В будущее с помощью чисел
  6. В процессе их хранения
  7. Введите через пробел 15 чисел
  8. Ввод чисел и символов в калькулятор
  9. Взаимодействие заряженных тел. Закон Кулона. Закон сохранения электрического заряда.
  10. Взаимодействие заряженных тел. Электрический заряд. Закон сохранения заряда. Закон Кулона.
  11. Взаимосвязь чисел и букв
  12. Визиты на высшем уровне: категории и форматы

Вещественные числа в математических вычислениях не имеют ограничений на диапазон и точность представления чисел. Однако в компьютерах числа хранятся в регистрах и ячейках памяти с ограниченным количеством разрядов. Поэтому точность представления вещественных чисел, представимых в машине, является конечной, а диапазон ограничен.

При написании вещественных чисел в программах вместо привычной запятой принято ставить точку. Любое вещественное число можно представить в форме записи чисел с порядком основания системы счисления.

Пример 4.4. Десятичное число 1.756 в форме записи чисел с порядком основания системы счисления можно представить так:

1.756 * 100 = 0.1756 * 101 = 0.01756 * 102 = ...

или так:

17.56 * 10-1 = 175.6 * 10-2 = 1756.0 * 10-3 = ... .

Представлением числа с плавающей точкой называется представление числа N в системе счисления с основанием q в виде:

N = m*qp,

где m - множитель, содержащий все цифры числа (мантисса), p - целое число, называемое порядком.

Если "плавающая" точка расположена в мантиссе перед первой значащей цифрой, то при фиксированном количестве разрядов, отведённых под мантиссу, обеспечивается запись максимального количества значащих цифр числа, то есть максимальная точность представления числа в машине.

Если в мантиссе первая цифра после точки (запятой) отлична от нуля, то такое число называется нормализованным.

Мантиссу и порядок q-ичного числа принято записывать в системе с основанием q, а само основание — в десятичной системе.

Пример 4.5. Приведем примеры нормализованного представления числа в десятичной системе:

2178.01 =0.217801 * 104

0.0045 =0.45 * 10-2

Примеры в двоичной системе:

10110.01= 0.1011001 * 2101 (порядок 1012=510)

Современными компьютерами поддерживаются несколько международных стандартных форматов хранения вещественных чисел с плавающей точкой, различающихся по точности, но все они имеют одинаковую структуру. Вещественное число хранится в трех частях: знак мантиссы, смещенный порядок и мантисса:

Смещенный порядок n-разрядного нормализованного числа вычисляется следующим образом: если для задания порядка выделено k разрядов, то к истинному значению порядка, представленного в дополнительном коде, прибавляют смещение, равное (2k-1 — 1).



Таким образом, порядок, принимающий значения в диапазоне от -128 до +127, преобразуется в смещенный порядок в диапазоне от 0 до 255. Смещенный порядок хранится в виде беззнакового числа, что упрощает операции сравнения, сложения и вычитания порядков, а также упрощает операцию сравнения самих нормализованных чисел.

Количество разрядов, отводимых под порядок, влияет на диапазон от наименьшего отличного от нуля числа до наибольшего числа, представимого в машине при заданном формате. Очевидно, что чем больше разрядов отводится под запись мантиссы, тем выше точность представления числа. В связи с тем, что у нормализованных вещественных чисел старший бит мантиссы всегда равен 1, этот старший бит не хранится в памяти.

Любое двоичное целое число, содержащее не более m разрядов, может быть без искажений преобразовано в вещественный формат.

Таблица 4.3. Стандартные форматы представления вещественных чисел

Формат Что хранится Кол-во битов, отводимых под смещенный порядок Кол-во битов, отводимых под мантиссу
Одинарный 32-разрядное нормализованное число со знаком
Двойной 64-разрядное нормализованное число со знаком
Расширенный 80-разрядное число со знаком (возможно ненормализованные)

Пример 4.6. Представление нормализованных чисел в одинарном формате.

Проиллюстрируем, как будет храниться число 37,1610. При переводе в двоичное число не получается точного перевода 100101,(00101000111101011100) - дробная часть, заключенная в скобках, повторяется в периоде.

Переводим число в нормализованный вид: 0,100101(00101000111101011100) * 2110

Представим вещественное число в 32-разрядном формате:

1. Знак числа «+», поэтому в знаковый разряд (31) заносим 0;

2. Для задания порядка выделено 8 разрядов, к истинному значению порядка, представленного в дополнительном коде, прибавляем смещение (27 — 1)=127. Так как порядок положительный, то прямой код порядка совпадает с дополнительным, вычислим смещенный порядок: 00000110 + 01111111=10000101. Заносим полученный смещенный порядок.

‡агрузка...

3. Заносим мантиссу, при этом старший разряд мантиссы убираем (он всегда равен 1);

знак смещенный порядок мантисса

В данном примере мы смогли перенести только 24 разряда, остальные были утеряны с потерей точности представления числа.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 |


Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)