АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Функции

Читайте также:
  1. I Психологические принципы, задачи и функции социальной работы
  2. I. Деньги и их функции.
  3. I. Функции эндоплазматической сети.
  4. II. Основные задачи и функции
  5. II. Основные задачи и функции
  6. II. Функции плазмолеммы
  7. III. Предмет, метод и функции философии.
  8. IV. Конструкция бент-функции
  9. Ms Excel: мастер функций. Логические функции.
  10. SALVATOR создает Знания-Образы, когнитивные имитационные модели сознания, расширяющие человеческие возможности и защитные функции.
  11. V2: ДЕ 29 - Введение в анализ. Предел функции на бесконечности
  12. V2: ДЕ 32 - Дифференциальное исчисление функции одной переменной. Производная
  • барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
  • транспортная — через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов.
    Частицы, по какой-либо причине неспособные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза.
    При пассивном транспорте вещества пересекают липидный бислой без затрат энергии по градиенту концентрации путем диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.
    Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивает в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).
  • матричная — обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.
  • механическая — обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных — межклеточное вещество.
  • энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;
  • рецепторная — некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).
    Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.
  • ферментативная — мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
  • осуществление генерации и проведения биопотенциалов.
    С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.
  • маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же

Структура и состав биомембран

Мембраны состоят из липидов трёх классов: фосфолипиды, гликолипиды и холестерол. Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим — более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку. Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются.

Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп) затруднён

5. Органоиды - постоянные структуры цитоплазмы, имеющие определенное строение и функции. Органоиды классифицируются по строению и по функцию. По строению различают:
1. Органоиды общего назначения (имеются в большем или меньшем количестве во всех клетках, обеспечивают функции необходимые всем клеткам):
митохондрия, эндоплазматическая сеть, пластинчатый комплекс, лизосомы, клеточный центр, пероксисомы.
2. Органоиды специального назначения - (имеются только в клетках высокоспециализированных тканей и обеспечивают выполнение строгоспецифических функций этих тканей): в эпителиальных клетках - реснички, микроворсинки, тонофибриллы; в нейральных тканях - нейрофибриллы и базофильное вещество; в мышечных тканях - миофибриллы.
По строению органиоды подразделяются:
1. Мембранные - эндоплазматическая сеть, митохондрии, пластинчатый комплекс, лизосомы, пероксисомы.
2. Немембранные - рибосомы, микротрубочки, центриоли, реснички.
Строение и функции органоидов:
1. Митохондрии - структуры округлой, овальной и сильновытянутой эллепсоидной формы. Окружены двойной элементарной мембраной: наружная элементарная мембрана имеет ровную поверхность, внутренняя мембрана образует складки - кристы; полость внутри внутренней мембраны заполнена матриксом - гомогенная бесструктурная масса. Функция: митохондрии называют"энергетическими станциями" клетки, т.е. там происходит аккумулирование энергии в виде АТФ, выделяемое при "сжигании" белков, жиров, углеводов и др. веществ. Короче, митохондрии - поставщики энергии.
2. Эндоплазматическая сеть(ЭПС) - это система (сеть) внутриклеточных канальцев, стенки которых состоит из элементантарных биологических мембран. Различают ЭПС гранулярного типа (в стенки ЭПС вмонтированы гранулы = рибосомы) - с фукнцией синтеза белков, и агранулярного типа (канальцы без рибосом) - с функцией синтеза жиров, липидов и углеводов.
3. Пластинчатый комплекс (Гольджи) - система наслоенных друг на друга уплощенных цистерн, стенка которых состоит из элементарной биологической мембраны, и расположенных рядом пузырьков (везикул). Располагается обычно над ядром, и выполняет функцию - завершение процессов синтеза веществ в клетке, расфасовка продуктов синтеза по порциям в везикулы, ограниченных элементарной биологической мембраной. Везикулы в дальнейшем транспортируются в пределах данной клетки или выводятся экзоцитолизом за пределы клетки.
4.Лизосомы - структуры округлой или овальной формы, окружены элементарной биологической мембраной, содержащие внутри полный комплект протеолитических и других литических ферментов. Функция - обеспечивают внутриклеточное переваривание, т.е. последнюю фазу фаго(пино)цитоза.
5.Пироксисомы - мелкие структуры округлой или овальной формы, окруженные элементарной базальной мембраной, содержащие внутри пероксидазу, обеспечивающая обезвреживание перекисных радикалов - продуктов обмена веществ, подлежащих удалению из организма.
6.Клеточный центр - органоид обеспечивающий двигательную функцию (растаскивание хромосом) при делении клетки. Состоит из 2-х центриолей; каждая центриоля представляет собой цилиндрическое тело, стенка которого образована 9-ю парами микротрубочек расположенных по периферии цилиндра вдоль и 1-й парой микротрубочек в центре. Центриоли располагаются по отношению друг к другу перпендикулярно. При делении клетки центриоли располагаются на двух противоположных полюсах и обеспечивают растаскивание хромосом к полюсам.
7.Реснички - органоиды, аналогичные по строению и функцию с центриолями, т.е. имеют сходное строение и обеспечивают двигательную функцию. Ресничка представляет собой вырост цитоплазмы на поверхности клетки, покрытый цитолеммой. Вдоль этого выроста внутри располагаются 9 пар микротрубочек, расположенных параллельно друг к другу, образуя цилиндр; в центре этого цилиндра вдоль, а следовательно и в центре реснички, располагается еще 1 пара центральных микротрубочек. У основания этого выроста-реснички, перпендикулярно к ней, располагается еще одна аналогичная структура.
8.Микроворсинки - это выросты цитоплазмы на поверхности клеток, покрыты снаружи цитолеммой, увеличивают площадь поверхности клетки. Встречаются в эпителиальных клетках, обеспечивающих функцию всасывания (кишечник, почечные канальцы).
9,Миофибриллы - состоят из сократительных белков актина и миозина, имеются в мышечных клетках и обеспечивают процесс сокращения.
10.Нейрофибриллы - встречаются в нейроцитах и представляют собой совокупность нейрофибрилл и нейротрубочек. В теле клетки располагаются беспорядочно, а в отростках - параллельно друг к другу. Выполняют функцию скелета нейроцитов (т.е. функция цитоскелета), а в отростках участвуют в транспортировке веществ от тела нейроцитов по отросткам на периферию.
11.Базофильное вещество - имеется в нейроцитах, под электронном микроскопом соответствует ЭПС гранулярного типа, т.е. органоида, ответственного за синтез белков. Обеспечивает внутриклеточную регенерацию в нейроцитах (обновление изношенных органоидов, при отсутствии способности нейроцитов к митозу).
12. Пероксисомы - овальные тельца (0,5-1,5 мкм) окруженные элементарной мембраной, заполненные гранулярным матриксом с кристаллоподобными структурами; содержат каталазы для разрушения перекисных радикалов. Функция: обезвреживание перекисных радикалов, образующихся при метаболизме в клетках.
Включения - непостоянные структуры цитоплазмы, могущие появляться или исчезать, в зависимости от функционального состояния клетки. Классификация включений:
I. Трофические включения - отложенные в запас гранулы питательных веществ (белки, жиры, углеводы). В качестве примеров можно привести: гликоген в нейтрофильных гранулоцитах, в гепатоцитах, в мышечных волокнах; жировые капельки в гепатоцитах и липоцитах; белковые гранулы в составе желтка яйцеклеток и т. д.
II. Пигментные включения - гранулы эндогенных или экзогенных пигментов. Примеры: меланин в меланоцитах кожи (для защиты от УФЛ), гемаглобин в эритроцитах (для транпортировки кислорода и углекислого газа), родопсин и йодопсин в палочках и колбочках сетчатки глаза (обеспечивают черно-белое и цветное зрение) и т.д.
III. Секреторные включения - капельки (гранулы) секрета веществ, подготовленные для выделения из любых секреторных клеток (в клетках всех экзокринных и эндокринных желез). Пример: капельки молока в лактоцитах, зимогенные гранулы в панкреатоцитах и т.д.
IV. Экскреторные включения - конечные (вредные) продукты обмена веществ, подлежащие удалению из организма. Пример: включения мочевины, мочевой кислоты, креатинина в эпителиоцитах почечных канальцев.

6. Ядро (лат. nucleus) — это один из структурных компонентов эукариотической клетки, содержащий генетическую информацию (молекулы ДНК). В ядре происходит репликация — удвоение молекул ДНК, а также транскрипция — синтез молекул РНК на молекуле ДНК. В ядре же синтезированные молекулы РНК подвергаются ряду модификаций, после чего выходят в цитоплазму. Образование субъединиц рибосом также происходит в ядре в специальных образованиях - ядрышках.

Огромная длина молекул ДНК эукариот предопределила появление специальных механизмов хранения, репликации и реализации генетического материала. Хроматином называют молекулы хромосомной ДНК в комплексе со специфическими белками, необходимыми для осуществления этих процессов. Основную массу составляют «белки хранения», так называемые гистоны. Из этих белков построены нуклеосомы - структуры, на которые намотаны нити молекул ДНК. Нуклеосомы располагаются довольно регулярно, так что образующаяся структура напоминает бусы. Нуклеосома состоит из белков четырех типов: H2A, H2B, H3 и H4. В одну нуклеосому входят по два белка каждого типа — всего восемь белков. Гистон H1, более крупный чем другие гистоны, связывается с ДНК в месте ее входа на нуклеосому. Нуклеосома вместе с H1 называется хроматосомой.

Схема, показывающая цитоплазму, вместе с ее компонентами (или органеллами), в типичной животной клетке. Органеллы:
(1) Ядрышко
(2) Ядро
(3) рибосома (маленькие точки)
(4) Везикула
(5) шероховатый эндоплазматический ретикулум (ER)
(6) Аппарат Гольджи
(7) Цитоскелет
(8) Гладкий эндоплазматический ретикулум
(9) Митохондрия
(10) Вакуоль
(11) Цитоплазма
(12) Лизосома
(13) Центриоль и Центросома

Нить ДНК с нуклеосомами образует нерегулярную соленоид-подобную структуру толщиной около 30 нанометров, так называемую 30 нм фибриллу. Дальнейшая упаковка этой фибриллы может иметь различную плотность. Если хроматин упакован плотно, его называют конденсированным или гетерохроматином, он хорошо видим под микроскопом. ДНК, находящаяся в гетерохроматине, не транскрибируется, обычно это состояние характерно для незначимых или молчащих участков. В интерфазе гетерохроматин обычно располагается по периферии ядра (пристеночный гетерохроматин). Полная конденсация хромосом происходит перед делением клетки. Если хроматин упакован неплотно, его называют эу- или интерхроматином. Этот вид хроматина гораздо менее плотный при наблюдении под микроскопом и обычно характеризуется наличием транскрипционной активности. Плотность упаковки хроматина во многом определяется модификациями гистонов — ацетилированием и фосфорилированием.

Считается, что в ядре существуют так называемые функциональные домены хроматина(ДНК одного домена содержит приблизительно 30 тысяч пар оснований), то есть каждый участок хромосомы имеет собственную «территорию». К сожалению, вопрос пространственного распределения хроматина в ядре изучен пока недостаточно. Известно, что теломерные (концевые) и центромерные (отвечающие за связывание сестринских хроматид в митозе) участки хромосом закреплены на белках ядерной ламины.


1 | 2 | 3 | 4 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)