|
|||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Естественный и поляризованный светПо современным физическим представлениям свет представляет собой электромагнитные колебания определенного частотного диапазона. Поэтому математическое описание оптических явлений строится на основе базовых уравнений электромагнетизма - уравнений Максвелла. Одним из важнейших следствий уравнений Максвелла является предсказание существования электромагнитных волн. Свет это электромагнитная волна, в которой происходят синфазные колебания вектора напряженности электрического поля вектора Величины, входящие в уравнения Максвелла, связаны дополнительными соотношениями (материальными уравнениями), которые учитывают реакцию среды на внешнее электромагнитное поле. Как показывает опыт, физиологическое, фотохимическое, фотоэлектрическое и другие действия света вызываются колебаниями электрического вектора. Поэтому его принято называть световым вектором. В дальнейшем мы будем говорить только о векторе Свет, испускаемый обычными световыми источниками, есть совокупность световых волн со всевозможными направлениями колебания вектора Частично поляризованный свет это свет с преимущественным направлением колебаний вектора Если колебания светового вектора
Рис. 1.1
Если вектор
Рис. 1.2. Электрическое поле в эллиптически-поляризованной волне
Для частично поляризованного света вводится понятие степень поляризации. Степенью поляризации называется величина где Естественный свет можно преобразовать в плоскополяризованный, используя так называемые поляризаторы - устройство, содержащее прозрачное вещество,пропускающее колебания только определенного направления. В качестве поляризаторов используются среды, анизотропные в отношении колебаний Вещество это система электрических зарядов положительных и отрицательных, в целом скомпенсированных, но под действием электрического поля эти заряды будут смещаться, т.е. вещество будет поляризоваться. В переменном поле направление вектора Взаимодействие электромагнитной волны с конкретным веществом зависят от её состояния поляризации. Например, если мы найдём вещество, в котором заряжённые частицы могут свободно смещаться в направлении оси Очевидно, что понятие поляризации применимо только к тем волнам, которые имеют, по крайней мере, два независимых направления поляризации. Рассмотрим, например, звуковую волну, распространяющуюся в воздухе вдоль. Если для такой волны известны частота, амплитуда и фаза, то волна определена. Мы знаем, что в звуковой волне смещение происходит вдоль направления распространения волны, т. е. что звуковые волны продольны. В этом случае нет необходимости говорить о продольно-поляризованной волне. Понятие поляризацииприменимо для более сложного случая, когда имеются, по крайней мере, два независимых направления поляризации. У звуковых волн в твёрдом телеили у волн в «пружине» имеются три возможных состояния поляризации — одно продольное и два поперечных. В этом случае можно говорить о волнах с продольной поляризацией или о двух волнах с различной поперечной поляризацией. В общем случае волна может быть суперпозицией всех трех состояний поляризации. 2. ИЗЛУЧЕНИЕ ДИПОЛЯ Для понимания дальнейшего необходимо сделать небольшое отступление. Зададимся вопросом, что происходит, когда электромагнитная волна попадает в вещество, состоящее из системы электрических зарядов? Очевидно, что происходит смещение положительных зарядов (ядер) в направление вектора Согласно представлениям классической электродинамики, движущиеся с ускорением электрические заряды, возбуждают электромагнитные волны. Простейшей излучающей системой является осциллирующий электрический диполь, электрический момент Если излучающая система электронейтральна, а её размеры малы по сравнению с длиной Рассмотрим некоторые закономерности излучения линейного гармонического осциллятора — электрического диполя, размер которого
где Напомним, электрическое поле постоянного диполя спадает при удалении от него по закону
где Факт существования электромагнитного поля, амплитуда которого убывает с расстоянием как
Рис. 2.1
Интенсивность электромагнитной волны, т. е. среднее значение плотности потока энергии
Зависимость Здесь длина отрезка Рис. 2.2 Как показывает теория, мощность излучения
где
Усреднив (2.5) по времени (
Средняя мощность излучения осциллирующего диполя зависит от квадрата амплитуды дипольного момента Формула (2.4) справедлива также для излучения заряда
и если заряд, например, покоится После подстановки этого выражения в формулу (4) найдем:
где Индексы В качестве примера можно привести заряженные частицы, движущиеся в циклических ускорителях (бетатроне, циклотроне и др.). Здесь обнаруживается естественный предел для энергии ускоряемой частицы, когда энергия, сообщаемая частице за период, становится равной энергии излучения. Другой пример — излучение электрона в атоме. По классическим представлениям электрон в атоме совершает колебания, т. е. движется с ускорением и, значит, излучает. Расчёт показывает, что время Следует обратить внимание на то, что заряд, колеблющийся с частотой И последнее, заряд, движущийся в вакууме с постоянной скоростью, не излучает. В этом легко убедиться и непосредственно. Достаточно перейти в систему отсчета, где заряд покоится (а такой заряд не излучает) и затем воспользоваться принципом относительности: если этого явления (излучения) нет в одной системе отсчета, его нет и в других, по отношению к которым заряд движется* *(Это относится только к движению в вакууме. Если же заряд движется с постоянной скоростью в среде, то в случае, когда его скорость превышает фазовую скорость электромагнитных волн в этой среде, наблюдается излучение Вавилова - Черенкова) 3. ПОЛЯРИЗАЦИЯ ПРИ ОТРАЖЕНИИ И ПРЕЛОМЛЕНИИ СВЕТА НА ГРАНИЦЕ ДВУХ ДИАЛЕКТРИКОВ Одним из способов получения поляризованного света является его отражение, и преломление на границе раздела двух изотропных диэлектриков. Если естественный свет падает на границу раздела двух диэлектриков, то отражённый и преломлённый лучи оказываются частично поляризованными.В отражённом луче преобладают колебания перпендикулярные плоскости падения, а в прёломленном колебания, лежащие в плоскости падения. Если угол падения равен углу Брюстера,который определяется соотношением
то отражённый луч является плоскополяризованным в плоскости перпендикулярной плоскости падения (рис.3.1).
Рис. 3.1
Используя (3.1) нетрудно вычислить величину этого угла:
Например, для границы раздела "воздух-стекло" Преломлённый луч в этом случае поляризуется максимально, но не полностью. При этом отражённый и преломлённый лучивзаимно перпендикулярны. Это следует из следующего:
С другой стороны известно соотношение Снеллиуса: тогда
Брюстеровский угол называют также углом полной поляризации.Действительно, если падающий под этим углом свет деполяризован, то отражённый пучок света линейно поляризован перпендикулярно плоскости падения. Таким образом, эффект Брюстера можно использовать для получения линейно поляризованного света. Степень поляризации отраженного и преломленного света при различных углах падения можно рассчитать из уравнений Максвелла, если учесть граничные условия для электромагнитного поля на границе раздела двух диэлектриков. Из сказанного выше следует что, если падающая световая волна поляризована в плоскости падения и выполняется соотношение (3.1)
Рис. 3.2. К пояснению эффекта Брюстера
Эффект Брюстера с точки зрения классической теории, объясняется следующим образом. Согласно электромагнитной теории, отражённый луч света представляет собой переизлучение диполей второй среды, при этом выполняется принцип Гюйгенса-Френеля. Из рис. 3.2 видно, что при выполнении условия (3.2) С микроскопической точки зрения на границе раздела возникает монослой излучающих диполей, ориентированных перпендикулярно преломлённой волне (что является прямым следствием граничных условий Максвелла). Как было показано выше (см. раздел 2), вдоль своей оси диполь не излучает. Поэтому при перпендикулярности преломлённого и отражённого пучков коэффициент отражения соответствующей поляризации обращается в нуль (рис. 3.2). В результате отражённый луч отсутствует, и вся энергия света передается преломлённому лучу. Отсюда следует, что эффект Брюстера возможен лишь при поляризации падающего луча в плоскости падения. Если же падающий луч не поляризован или поляризован перпендикулярно плоскости падения, то отражённый луч должен наблюдаться при любом угле падения. На практике получение линейно поляризованного света за счет отражения под углом Брюстера используется редко из-за низкого коэффициента отражения. Однако возможно построение поляризатора, работающего на пропускание, с использованием стопы Столетова (рис. 3.3).
Рис. 3.3. Стопа Столетова
Стопа Столетова состоит из нескольких плоскопараллельных стеклянных пластинок. При прохождении через неё света под углом Брюстера перпендикулярная компонента практически полностью рассеивается на границах раздела, а прошедший луч оказывается, поляризован в плоскости падения. Такие поляризаторы используются в мощных лазерных системах, в которых поляризаторы других типов могут быть разрушены лазерным излучением.
4. АНАЛИЗ ПОЛЯРИЗОВАННОГО СВЕТА. ЗАКОН МАЛЮСА Существует много разных способов получения поляризованного света. Устройства, которые позволяют получать поляризованное излучение, называют поляризаторами. Анализ поляризованного света осуществляется с помощью поляризационных приборов. Если поляризационный прибор используется для получения поляризованного света, то он называется поляризатором. При использовании прибора для анализа поляризованного света его называют анализатором. Простейшим примером поляризатора является поляроид. Он состоит из тонкого слоя маленьких кристаллов герапатита (соль йода и хинина), выстроенных своими осями параллельно друг другу. Эти кристаллы поглощают свет, когда колебания происходят вдоль оси, в направлении котором выстроены кристаллы, и почти не поглощают света, когда колебания совершаются в перпендикулярном направлении. Направление, перпендикулярное направлению, вдоль которого выстроены молекулы, называют осью свободного пропускания поляроида. Если поле Направим на идеальный поляроид естественный свет и выберем одно колебание со случайным световым вектором
Рис.4.1. Прохождение света через поляроид. Ось пропускания направлена по
Перпендикулярная компонента Амплитуда элементарной световой волны, прошедшего через поляроид
Это соотношение называют законом Малюса. Здесь
Поставим на пути плоскополяризованного света второй идеальный поляризатор П 2, (анализатор) под углом
где
Следовательно, интенсивность света, прошедшего через два поляризатора:
где Отсюда следует, что интенсивность света прошедшего два поляризатора максимальна, когда оси пропускания поляризаторов параллельны (
5. ОПТИЧЕСКАЯ АНИЗОТРОПИЯ И ОСНОВНЫЕ ЭФФЕКТЫ КРИСТАЛЛОПТИКИ 5.1. Двойное лучепреломление поляризация при двойном лучепреломлении Некоторые кристаллы обладают необычными оптическими свойствами. Например, кристалл исландского шпата (кальцит - СаСо3) преломляет свет по-разному в зависимости от того, с какой стороны падает свет на кристалл. В этом кристалле есть одно направление, вдоль которого при нормальномпадении луч света проходит прямолинейно (рис. 5.1а). Прямая, проведенная через любую точку кристалла в этом направлении, называется оптической осью. По количеству оптических осей, имеющихся у данного кристалла, различают одноосные и двухосные кристаллы. В дальнейшем речь будет идти только об одноосных кристаллах. Плоскость, содержащая оптическую ось и падающий луч, называют главным сечением или главной плоскостью кристалла. В других направлениях луч, проходя через кристалл, раздваиваетсяи образуется два пучка примерно одинаковой интенсивности (рис. 5.1б). Луч проходящий прямо называют обыкновенным лучом (о), а другой — необыкновенным (е). Это явление называется двойным лучепреломлением, а зависимость оптических свойств, например, показателя преломления, от направления в кристалле называют оптической анизотропией. В естественных условиях оптически анизотропными является большинство кристаллов. Рис. 5.1. Прохождение света вдоль оси исландского шпата (а). Двойное лучепреломление света, падающего нормально к естественной грани кристалла исландского шпата (б)
При повороте кристалла относительно оси падающего пучка пятно, соответствующее обыкновенному лучу, на экране остается неподвижным, а второе, соответствующее необыкновенному, поворачивается вокруг первого синхронно с поворотом кристалла (рис. 5.2б). Рис. 5.2. Картины, наблюдаемые на экране в опытах с кристаллом исландского шпата (а, б). Поляризация лучей (в)
Анализ поляризации лучей с помощью поляроида показывает, что оба луча, вышедших из кристалла, линейно поляризованы, причем направления поляризации в них взаимно ортогональны (Рис. 5.2в). У одноосных кристаллов для обыкновенного луча выполняется обычный закон преломления:
этот луч лежит в одной плоскости с падающим лучом и нормалью к преломляющей поверхности. Скорость этого луча во всех направлениях одинакова. Для необыкновенного луча отношение Причиной оптической анизотропииявляется анизотропия структуры среды. Анизотропия среды может быть обусловлена как анизотропией составляющих ее частиц, так и характером их расположения. В частности, изотропная среда может быть построена из анизотропных частиц, а анизотропная – из частиц изотропных. Оптическая анизотропиясреды характеризуется различной по разным направлениям способностью реагировать на действие падающего света. Реакция эта состоит в смещении электрических зарядов под действием поля световой волны. Из теории Максвелла следует, что фазовая скорость распространения света в среде
где Для большинства оптически прозрачных веществ магнитная проницаемость
Свойства изотропных сред одинаковы по всем направлениям и в таких средах Свойства анизотропных сред зависят от направления. В частности, от направления в среде зависит значение её диэлектрической проницаемости Одноосные кристаллы характеризуют показателем преломления обыкновенного луча, равным
Рис. 5.3 В зависимости от того, какая из скоростей, Ход обыкновенного и необыкновенного лучей в кристалле можно определить с помощью принципа Гюйгенса. На рис. 5.4 построены волновые поверхности обыкновенного и необыкновенного лучей с центром в точке 2, лежащей на поверхности кристалла.
Рис. 5.4
Построение выполнено на момент времени, когда волновой фронт падающей волны достигает точки 1. Огибающие всех вторичных волн для обыкновенного и необыкновенного лучей, очевидно, представляют собой плоскости. Преломленный луч о или е, выходящий из точки 2, проходит через точку касания огибающей с соответствующей волновой поверхностью. Плоскость колебаний вектора На рис. 5.5 изображены три случая нормального падения света на поверхность кристалла, отличающиеся различным направлением оптической оси. В случае (а) лучи о и е распространяются вдоль оптической оси и поэтому идут не разделяясь.
![]() ![]()
![]()
Из рис. 5.5б видно, что даже при нормальном падении света на преломляющую поверхность необыкновенный луч может отклониться от нормали к этой поверхности. На рис. 5.5в оптическая ось кристалла параллельна преломляющей поверхности. В этом случае при нормальном падении света обыкновенный и необыкновенный лучи идут по одному и тому же направлению, но распространяются с разной скоростью, вследствие чего между ними возникает все возрастающая разность фаз. Характер поляризации обыкновенного и необыкновенного лучей таков же, как для лучей, изображенных на рис. 5.4.
5.2. Прохождение плоскополяризованного света через кристаллическую пластинку Пусть плоскополяризованный свет падает перпендикулярно на кристаллическую пластинку толщиной Колебания вектора
Рис. 5.6. Вид на пластинку сверху.
Внутри кристалла падающий луч разделится на «обыкновенный» и «необыкновенный» лучи, амплитуды светового вектора в которых будут равны:
Скорости распространения лучей в пластинке различны, поэтому внутри пластинки между ними накопится дополнительная разность фаз колебаний векторов Эту разность фаз можно найти следующим образом. Поскольку волны входят в кристалл перпендикулярно его оптической оси, то их геометрические пути в кристалле будут одинаковы и равны толщине кристалла (рис.5.5в). Вместе с тем оптические длины путей для «обыкновенного» и «необыкновенного» лучей из-за различия в показателях преломления будут различны. Возникающая в кристалле оптическая разность хода волн равна
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.041 сек.) |