АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

СКРЭМБЛИРОВАНИЕ

Перемешивание данных скрэмблером перед передачей их в линию с помощью потенциального кода является другим способом логического кодирования.

Методы скрэмблирования заключаются в побитном вычислении результирующего кода на основании бит исходного кода и полученных в предыдущих тактах бит результирующего кода. Например, скрэмблер может реализовывать следующее соотношение:

Bi= AiBi-3Bi-5

где Bi - двоичная цифра результирующего кода, полученная на i-м такте работы скрэмблера, Ai - двоичная цифра исходного кода, поступающая на i-м такте на вход скрэмблера, Bi-3и Bi-5 - двоичные цифры результирующего кода, полученные на предыдущих тактах работы скрэмблера, соответственно на 3 и на 5 тактов ранее текущего такта, - операция исключающего ИЛИ (сложение по модулю 2). Например, для исходной последовательности 110110000001 скрэмблер даст следующий результирующий код: B1 = А1 = 1 (первые три цифры результирующего кода будут совпадать с исходным, так как еще нет нужных предыдущих цифр)


B1 = Ai = 1

B2 = Ai =1

B3= A3 = 0

B4= A4 B1 = 11 = 0

B5= A5 B2 = 11 = 0

B6= A6 B3B1 = 001 = 1

B7= A7 B4B2 = 001 = 1

B8 = A8B5B3 = 000 = 0

B9 = A9B6B4 = 010 = 1

B10= A10 B7B5 = 010= 1

B11 = A11B8B6 = 001 = 1

B12 = A12B9B7 = 111 = 1


 

Таким образом, на выходе скрэмблера появится последовательность 110001101111, в которой нет последовательности из шести нулей, присутствовавшей в исходном коде.

После получения результирующей последовательности приемник передает ее дескрэмблеру, который восстанавливает исходную последовательность на основании обратного соотношения:

Сi= Вi Bi-3 Bi-5 = (Ai Bi-3 Bi-5) Bi-3 Bi-5= Ai

Различные алгоритмы скрэмблирования отличаются количеством слагаемых, дающих цифру результирующего кода, и сдвигом между слагаемыми. Так, в сетях ISDN при передаче данных от сети к абоненту используется преобразование со сдвигами в 5 и 23 позиции, а при передаче данных от абонента в сеть - со сдвигами 18 и 23 позиции.

Существуют и более простые методы борьбы с последовательностями единиц, также относимые к классу скрэмблирования.

Для улучшения кода Bipolar AMI используются два метода, основанные на искусственном искажении последовательности нулей запрещенными символами.



На Рисунок 17 показано использование метода B8ZS (Bipolarwith 8-Zeros Substitution) и метода HDB3 (High-DensityBipolar 3-Zeros) для корректировки кода AMI. Исходный код состоит из двух длинных последовательностей нулей: в первом случае - из 8, а во втором - из 5.

Рисунок 17. Коды B8ZS и HDB3. V - сигнал единицы запрещенной полярности; 1*-сигнал единицы корректной полярности, но заменившей 0 в исходном коде

 

Код B8ZS исправляет только последовательности, состоящие из 8 нулей. Для этого он после первых трех нулей вместо оставшихся пяти нулей вставляет пять цифр: V-1*-0-V-1*. V здесь обозначает сигнал единицы, запрещенной для данного такта полярности, то есть сигнал, не изменяющий полярность предыдущей единицы, 1* - сигнал единицы корректной полярности, а знак звездочки отмечает тот факт, что в исходном коде в этом такте была не единица, а ноль. В результате на 8 тактах приемник наблюдает 2 искажения - очень маловероятно, что это случилось из-за шума на линии или других сбоев передачи. Поэтому приемник считает такие нарушения кодировкой 8 последовательных нулей и после приема заменяет их на исходные 8 нулей. Код B8ZS построен так, что его постоянная составляющая равна нулю при любых последовательностях двоичных цифр.

Код HDB3 исправляет любые четыре подряд идущих нуля в исходной последовательности. Правила формирования кода HDB3 более сложные, чем кода B8ZS. Каждые четыре нуля заменяются четырьмя сигналами, в которых имеется один сигнал V. Для подавления постоянной составляющей полярность сигнала V чередуется при последовательных заменах. Кроме того, для замены используются два образца четырехтактовых кодов. Если перед заменой исходный код содержал нечетное число единиц, то используется последовательность 000V, а если число единиц было четным - последовательность 1*00V.

Улучшенные потенциальные коды обладают достаточно узкой полосой пропускания для любых последовательностей единиц и нулей, которые встречаются в передаваемых данных. На Рисунок 18 приведены спектры сигналов разных кодов, полученные при передаче произвольных данных, в которых различные сочетания нулей и единиц в исходном коде равновероятны. При построении графиков спектр усреднялся по всем возможным наборам исходных последовательностей. Естественно, что результирующие коды могут иметь и другое распределение нулей и единиц. Из Рисунок 18 видно, что потенциальный код NRZ обладает хорошим спектром с одним недостатком - у него имеется постоянная составляющая. Коды, полученные из потенциального путем логического кодирования, обладают более узким спектром, чем манчестерский, даже при повышенной тактовой частоте (на рисунке спектр кода 4В/5В должен был бы примерно совпадать с кодом B8ZS, но он сдвинут в область более высоких частот, так как его тактовая частота повышена на 1/4 по сравнению с другими кодами). Этим объясняется применение потенциальных избыточных и скрэмблированных кодов в современных технологиях, подобных FDDI, FastEthernet, GigabitEthernet, ISDN и т. п. вместо манчестерского и биполярного импульсного кодирования.

Рисунок 18. Спектры потенциальных и импульсных кодов


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 |


Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)