АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Области применения

Читайте также:
  1. A. Законодательство в области медиа
  2. Comprehensive knowledge of smth. — глубокие познания (в какой-либо области)
  3. SCADA. Назначение. Возможности. Примеры применения в АСУТП. Основные пакеты.
  4. V. В области социально-экономических проблем северных регионов России.
  5. VDT (Vino da Tavola) — столовые вина, к которым не предъявляются требования в отношении области выращивания винограда и сортов, входящих в купаж вина.
  6. Аварийная ситуация №2 – разгерметизация в области парогазовой части колонны.
  7. Административно -территориальное устройство Ленинградской области. Исторический контекст.
  8. Административно территориальное устройство Ленинградской области как отражение властных компетенций.
  9. Административное правонарушение как основание применения мер административной ответственности.
  10. Акты применения норм права
  11. Акты применения правовых норм: понятие, особенности, виды.
  12. Анализ известных технических решений в рассматриваемой области и выбор прототипа проектируемого изделия.

Опускные колодцы используют при устройстве заглубленных подземных помещений насосных станций, водозаборов, скиповых ям доменных печей, установок непрерывной разливки стали, подземных гаражей, в качестве массивных и заглубленных фундаментов для опор мостов, механических прессов и различных испытательных стендов.

Опускные колодцы классифицируются:

По способам устройства стен опускные колодцы подразделяются на 3 группы:

Колодцы со стенами из монолитного ж/б рекомендуется применять, когда подземное помещение по технологическим требованиям имеет сложное очертание в плане; необходимо проходить скальные грунты или грунты с большим числом валунов и когда сборный опускной колодец конструктивно более сложно выполнить, чем монолитный.

Технология устройства опускного колодца состоит из следующих процессов:

 

Важным этапом процесса сооружения колодца является устройство основания под нож. Правильно выбранная схема опирания ножа колодца на грунт гарантирует сохранность колодца при снятии его с временных опор и равномерность погружения в грунт на первых метрах опускания.

Применяют 5 типов основания под нож опускного колодца:

Деревянные подкладки укладывают на песчано-гравийную подушку с заглублением их на 0,5 диаметра подкладки. Высота подушки 50

Основными требованиями, предъявляемыми к бетону опускных колодцев, помимо прочности являются: плотность и водонепроницаемость. Для стен и днища колодца применяют бетон М 200 и выше, водонепроницаемость В:4 и В: 6.

Стены колодца при бетонировании разбивают на ярусы, а ярусы

Основные типы гидроизоляции:

– покраска битумно-бензиновым раствором;

– оклеечная;

– металлическая гидроизоляция;

– литая асфальтобитумная.

Колодцы погружают в грунт под действием собственного веса. В настоящее время применяют два способа опускания колодца: насухо, с водоотливом или с искусственным водопонижением уровня грунтовых вод; без водоотлива, с разработкой грунта под водой.

При опускании колодцев насухо используют три схемы разработки и выдачи грунта из колодцев.

По первой схеме грунт в колодце разрабатывают экскаваторами или бульдозерами и на поверхность выдают кранами в бадьях.

Вторая схема предусматривает разработку грунта в колодце грейдерами.

По третьей схеме используют гидромеханический способ, состоящий из трех подсхем:

Способ опускания колодцев определяется в проекте производства работ, в зависимости от гидрогеологических условий стройплощадки и местных условий строительства. При сооружении опускных колодцев могут происходить перекосы и зависание их, самопроизвольное опускание. В таких случаях перекосы исправляют следующими способами:

Самопроизвольное опускание колодца останавливают путем установки под наклонную грань специальных фигурных ж/б блоков или фундаментных блоков. Зависание колодцев исправляют теми же способами, что и перекосы.

 

Ограждение по способу «стена в грунте»

Категория: Лекции по освоению подземного пространства крупных городов

Способ «стена в грунте» является одним из наиболее прогрессивных и универсальных для устройства подземных сооружений, возводимых в открытых котлованах.

По назначению различают три типа стен: несущие, ограждающие и противофильтрационные; по материалам - монолитные, сборные и сборно-монолитные.

Технология строительства состоит из пяти основных технологических этапов:

- разработка траншеи под защитой глинистого раствора;

- установка арматурного каркаса;

- заполнение траншеи монолитным или сборным железобетоном;

- разработка грунта в ядре сооружения с замоноличиванием стыков и устройством распорных конструкций;

- устройство днища внутренних конструкций.

Способ «стена в грунте» позволяет осуществлять строительство:

- в непосредственной близости от существующих зданий и сооружений;

- при значительной глубине сооружения (до 50 м);

- при больших размерах в плане и сложной форме сооружения;

- при высоком уровне подземных вод.

По грунтовым условиям «стена в грунте» может применяться в любых дисперсных грунтах за исключением:

- текучих глинистых грунтов, илов и плывунов;

- при наличии подземных вод с большими скоростями фильтрации.

При наличии грунтов, содержащих твердые включения природного или техногенного происхождения (крупные валуны, обломки бетонных конструкций, каменной кладки и др.) при проходке траншеи необходимо использовать технику, оснащенную фрезерным оборудованием, например, фирм «Касагранде», «Бауэр», TONE Boring.

Использование грейферного оборудования, которым крупные включения извлекаются, может привести к деформированию стенки траншеи, падению уровня тиксотропного раствора и деформациям окружающего массива и близрасположенных зданий.

При наличии трещиноватых скальных грунтов или прослоев из них и закарстованных пород, когда тиксотропный раствор может вытекать в грунт, необходимо применять опережающий тампонаж этих прослоев цементно-глинистыми растворами.

При устройстве «стены в грунте» жесткие требования должны предъявляться к глинистому раствору, приготовление которого, как правило, должно осуществляться с использованием бентонитового глинопорошка. Плотность раствора должна составлять при приготовлении его с использованием бентонитового глинопорошка 1,03 - 1,10 г/см3, а из глин других видов - 1,10 - 1,25 г/см3.

При разработке траншей в неустойчивых грунтах (водонасыщенные пески, глинистые грунты текучей консистенции) с напорными водами необходимо использовать глинистые растворы повышенной плотности, для чего допускается применять барит, магнетит и другие утяжелители раствора, но не более 7 % массы глины.

Для снижения водоотдачи и потерь глинистого раствора в него можно добавлять жидкое стекло (силикат натрия) в пределах 2 - 6 % массы глины.

При устройстве монолитных стен в грунте методом вертикально перемещающейся трубы (ВПТ) необходимо применять более совершенную технологию бетонирования с использованием вибрирования. Если бетон литых смесей, укладываемый без вибрирования, должен иметь осадку конуса 18 - 20 см, то при бетонировании полужесткими смесями с применением вибраторов осадка конуса должна быть не более 8 см, а подвижность бетонной смеси сохраняться на период транспортировки и укладки - не менее 40 мин.

При закреплении глубинных вибраторов на нижней части бетонолитной трубы при применении жестких смесей с осадкой конуса 3 - 6 см значительно повышается однородность бетона, а его средняя прочность на 35 - 40 % выше, чем при укладке литых смесей.

При регулировании процесса подачи бетона путем включения и выключения вибратора достигается повышенная плотность, прочность и водонепроницаемость стены. Вместо литых бетонов с высоким содержанием цемента (до 500 - 600 кг/м3) можно использовать малоподвижные смеси с осадкой конуса 3 - 4 см. Экономия цемента по сравнению с литыми смесями составляет 150 - 200 кг/м3. Метод применим и при температуре до -30° С.

Для повышения индустриальности ведения работ и качества стен рекомендуется применять сборный или сборно-монолитный вариант. Сборная или сборно-монолитная «стена в грунте» позволяет увеличить скорость возведения конструкции и снизить ее трудоемкость, а также снизить расход бетона.

Применение для ограждения котлованов технологии «стена в грунте» в виде сборной или сборно-монолитной конструкции позволяет получить:

- гарантированную марку бетона стен по прочности и водонепроницаемости;

- гарантированную геометрию и чистую поверхность стен;

- снижение расхода бетона на 15 - 20 %;

- возможность установки в заводских условиях закладных деталей и сальников для подводки коммуникаций;

- исключение необходимости регулярной поставки расчетного количества товарного бетона в нормативные сроки;

- увеличение скорости возведения конструкции на 15 - 20 %;

- снижение трудоемкости работ;

- возможность передачи нагрузки на стену сразу после ее возведения.

В качестве конструкций сборной «стены в грунте» хорошо зарекомендовали себя шпунтовые панели ПШС-50, разработанные ОАО «ЦНИИС» (Москва). Панели шириной 1,5 м, толщиной 0,5 м и длиной, равной глубине траншеи, соединяются друг с другом посредством пазового замка.

Другая конструкция «стены в грунте» с листовой арматурой состоит из сборных железобетонных стеновых блоков, устанавливаемых в заполненную глинистым раствором траншею с определенными интервалами и монолитных участков между ними из бетона или цементного раствора (рис. 4.1).

Рис. 4.1. Принципиальная схема сборно-монолитной «стены в грунте»:

1 - стеновой блок; 2 - листовая арматура; 3 - бетонное заполнение; 4 - отметка верха блока; 5 - отметка дна котлована; 6 - отметка низа стены; 7 - контур траншеи

Стеновые блоки поперечного сечения 600´600 мм, длиной до 25 м и массой 15 - 20 т имеют полуцилиндрические боковые поверхности, снабженные со стороны подземного сооружения листовой арматурой толщиной 6 - 10 мм, которая может служить гидроизоляцией. Блоки изготавливаются в заводских условиях из тяжелого бетона класса В22,5 - В30, марки по водонепроницаемости W4 - W6. Конструкция сборно-монолитной стены толщиной 600 мм может быть использована при глубине «стены в грунте» до 28 м в различных инженерно-геологических условиях. При этом на нее могут быть переданы вертикальные нагрузки до 1500 кН/м и изгибающие моменты до 1000 кНм/м.

Технологические приемы, применяемые для омоноличивания (тампонажа) стыков при устройстве «стен в грунте», должны обеспечивать достаточную прочность и водонепроницаемость стыков.

Опыт строительства показывает, что более рационально увеличить ширину стыка (и расстояние между панелями) с обычных 20 мм до 200 - 300 мм и перейти на тампонаж его бетонным раствором с классом не ниже В25. Применение этой рекомендации полностью исключает фильтрацию подземных вод и позволяет отказаться от заварки стыков металлическими накладками.

Эффективно технологическое решение стыков из монолитного и сборного железобетона вибронабивным способом. Оборудование для омоноличивания бетонной смесью стыков ограждающих конструкций под глинистым раствором включает: инвентарную трубу, вибратор (например, В-401), приемный бункер с площадкой для обслуживания вибратора и заполнения бункера бетонной смесью. Применение этой технологии обеспечивает высокое качество работ по прочности стыка (40 - 50 МПа) и водонепроницаемости (на контакте с бетоном испытаны на 2 атм.).

Технология устройства «стены в грунте» отдельными захватками (опережающими и соединительными) предусматривает установку арматурных каркасов и бетонирование в опережающих захватках и последующую разработку соединительных захваток со срезкой бетона толщиной 0,15 м с торцевых кромок опережающих захваток с последующей установкой каркасов и бетонированием. Такая технология обеспечивает монолитность «стены в грунте» и отсутствие холодных и грязевых швов в стыках.

Для надежного уплотнения проблемных стыков между панелями траншейных стен, как показал опыт строительства, успешно может быть применена технология струйной цементации «jet-grouting». При этом цементационные работы могут выполняться как снаружи ограждающих котлован стен, так и изнутри котлована до его разработки. С этой целью в зависимости от прогнозируемой величины раскрытия стыков с глубиной могут быть применены неармируемые или армируемые металлическими трубами грунтоцементные колонны диаметром 60 или 80 см.

Для разработки грунтового ядра внутри подземного сооружения, возводимого способом «стена в грунте», рекомендуется применять технологию, которая предусматривает разработку вначале центральной части грунтового массива внутри сооружения на глубину одного яруса с сохранением по периферии неразработанных участков. Такой прием облегчает работу ограждающей конструкции. Затем монтируются распорные конструкции и разрабатывается оставшаяся часть грунта. На следующей заходке цикл повторяется.

Новым и прогрессивным является также способ разработки грунта в котловане через перекрытия в многоуровневых подземных сооружениях. В этом случае дополнительная крепь ограждающих стен не применяется.

 


1 | 2 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.)