АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Хокинг, С. 7 страница

Читайте также:
  1. DER JAMMERWOCH 1 страница
  2. DER JAMMERWOCH 10 страница
  3. DER JAMMERWOCH 2 страница
  4. DER JAMMERWOCH 3 страница
  5. DER JAMMERWOCH 4 страница
  6. DER JAMMERWOCH 5 страница
  7. DER JAMMERWOCH 6 страница
  8. DER JAMMERWOCH 7 страница
  9. DER JAMMERWOCH 8 страница
  10. DER JAMMERWOCH 9 страница
  11. II. Semasiology 1 страница
  12. II. Semasiology 2 страница

И поскольку время и пространство взаимосвязаны, вас опять-таки не должно удивлять, что вопрос о путешествиях назад во времени тесно переплетается с проблемой перемещения на сверхсветовых скоростях. Нетрудно показать, что путешествия во времени предполагают сверхсветовые передвижения: сделав последний этап вашего путешествия перемещением назад во времени, вы сможете уложить всю вашу одиссею в сколь угодно короткий срок, а значит, сможете перемещаться с неограниченной скоростью! Но, как мы увидим, верно также и обратное: если вы способны перемещаться с неограниченной скоростью, то сможете и путешествовать назад во времени — одно невозможно без другого.

Проблема путешествий со сверхсветовой скоростью сильно занимает фантастов. Суть ее состоит в следующем: согласно теории относительности, отправив космический корабль к ближайшей звезде, альфе Центавра, которая находится на расстоянии около четырех световых лет, мы не можем рассчитывать, что его команда вернется к нам и сообщит о своих открытиях ранее чем через восемь лет. А если бы экспедиция отправилась к центру нашей Галактики, этот срок составил бы как минимум сто тысяч лет. Скверная ситуация для историй о межгалактических войнах!

Теория относительности оставляет одно утешение, опять-таки касающееся парадокса близнецов: можно сделать так, что космическим странникам путешествие покажется намного короче, чем оставшимся на Земле. Но немного радости в том, чтобы, проведя в космическом рейсе несколько лет, обнаружить по возвращении, что все, кого вы оставили, умерли тысячелетия назад. И дабы подогреть естественный человеческий интерес к своим историям, фантасты вынуждены были предположить, что однажды мы научимся перемещаться быстрее света. Большинство из них, кажется, не осознает того, что возможность перемещаться быстрее света влечет за собой в соответствии с теорией относительности и возможность путешествий в прошлое, как говорится в лимерике:

Очень шустрая мисс из Дакоты

Говорила: «Эйнштейн — это что-то!

Раз летала я где-то

Выше скорости света

И вернулась за день до отлета!» 1

Ключ к этой взаимосвязи в том, что согласно теории относительности не существует не только никакой единой для всех наблюдателей меры времени, но что при некоторых обстоятельствах нет нужды даже в том, чтобы наблюдатели были согласны относительно очередности событий. В частности, если два события А и В происходят так далеко друг от друга в пространстве, что ракета должна перемещаться быстрее света, чтобы поспеть от события А к событию В, тогда два наблюдателя, перемещающиеся с различными скоростями, могут не согласиться, что случилось раньше: событие А или событие В.

Допустим, к примеру, что событие А — это финиш заключительного стометрового забега на Олимпийских играх 2012 г., а событие В — открытие 100004-го Конгресса альфы Центавра. Допустим, что для наблюдателя на Земле событие А предшествует событию В. Скажем, событие В происходит годом позже — в 2013 г. по времени Земли. Так как Земля и альфа Центавра разделены расстоянием около четырех световых лет, эти два события удовлетворяют вышеупомянутому критерию: хотя А случается прежде В, чтобы поспеть от А к В, вы должны перемещаться быстрее света. В таких обстоятельствах наблюдателю на альфе Центавра, удаляющемуся от Земли с околосветовой скоростью, казалось бы, что события имеют обратный порядок: событие В происходит раньше события А. Этот наблюдатель утверждал бы, что, перемещаясь быстрее света, можно поспеть от события В к событию А. Следовательно, обладай вы способностью обгонять свет, смогли бы вернуться обратно от А к В до начала забега и сделать ставку, зная наверняка, кто победит!

Здесь возникает проблема, связанная с преодолением светового барьера. Теория относительности утверждает, что по мере приближения к скорости света для ускорения космического корабля требуется все больше и больше энергии. Тому есть экспериментальные подтверждения, полученные не для космических кораблей, а для элементарных частиц, разгоняемых на ускорителях, которыми располагают, например, Национальная лаборатория имени Ферми в США или Европейский центр ядерных исследований (ЦЕРН). Нам удается ускорять частицы до 99,99% скорости света, но не перескочить световой барьер, сколько бы ни наращивалась мощность установки. Так и с космическими кораблями: независимо от мощности ракеты они не могут разгоняться выше скорости света. И поскольку путешествие в прошлое возможно только при перемещении быстрее света, это, казалось бы, исключает и скоростные космические перелеты, и путешествия назад во времени.

Тут, однако, возможен некий обходной маневр. Можно было бы попробовать деформировать пространство-время так, чтобы открылся короткий путь из А в В. Один из способов состоит в том, чтобы создать из А и В так называемую кротовую нору. Как ясно из самого термина, кротовая нора — это тонкая пространственно-временная трубка, которая может соединять две далекие друг от друга области почти плоского пространства (рис. 31). Здесь прослеживается отдаленное сходство с той ситуацией, когда вы находитесь у подножия высокого горного хребта. Чтобы попасть на другую сторону, нужно долго взбираться наверх, а затем спускаться. Но этого не потребуется, если толщу скальной породы пронизывает гигантский горизонтальный тоннель. Предположим, что можно создать или найти кротовую нору, ведущую из нашей Солнечной системы к альфе Центавра. Протяженность такой норы могла бы составлять всего несколько миллионов километров, хотя в обычном пространстве расстояние между Землей и альфой Центавра составляет около сорока миллионов миллионов километров. Если бы мы передали через кротовую нору известие об итогах стометрового забега, наше сообщение успело бы достичь цели задолго до открытия конгресса. Но тогда наблюдатель, летящий к Земле, тоже нашел бы кротовую нору, которая позволила бы ему добраться до Земли с открытия конгресса на альфе Центавра перед началом забега. Так что кротовые норы, подобно любым другим способам сверхсветового перемещения, позволили бы путешествовать в прошлое.

Идея кротовых нор, соединяющих различные области пространства-времени, не выдумана фантастами, а восходит к очень авторитетному источнику. В 1935 г. Альберт Эйнштейн и Натан Розен написали работу, в которой доказывали, что общая теория относительности допускает образование того, что они назвали «мостами» и что теперь известно как кротовые норы.

Рис. 31. Кротовая нора.

Если кротовые норы существуют, они могут служить кратчайшими путями между удаленными точками космического пространства.

 

Мосты Эйнштейна—Розена не могли существовать достаточно долго, чтобы через них прошел космический корабль: при закрытии кротовой норы корабль попал бы в сингулярность. Однако было высказано предложение, что технологически развитая цивилизация могла бы держать кротовую нору открытой. Можно показать, что для достижения этого или для сворачивания пространства-времени любым другим способом, допускающим путешествия во времени, нужна область пространства-времени с отрицательной кривизной, подобная поверхности седла. Обычная материя, обладающая положительной плотностью энергии, придает пространству-времени положительную кривизну, напоминающую поверхность сферы. Поэтому для такой деформации пространства-времени, которая позволит путешествовать в прошлое, понадобится материя с отрицательной плотностью энергии.

Что означает отрицательная плотность энергии? Энергия отдаленно напоминает деньги: располагая положительным балансом, вы можете по-разному распределять денежные средства по счетам, но согласно классическим законам, которые признавались в начале двадцатого столетия, ни с какого счета нельзя снять больше денег, чем на нем лежит. Таким образом, эти классические законы исключали отрицательную плотность энергии и, следовательно, любую возможность путешествий назад во времени. Однако, как мы показали в предыдущих главах, классические законы были потеснены квантовыми, основанными на принципе неопределенности. Квантовые законы либеральнее и допускают перерасход средств на одном или двух счетах при условии, что общий баланс положителен. Другими словами, квантовая теория допускает отрицательную плотность энергии в некоторых областях пространства, при условии что она компенсируется положительной плотностью энергии в других областях, так чтобы энергия в целом оставалась положительной. Итак, у нас есть основания думать, что пространство-время может быть деформировано, причем его можно свернуть так, что это сделает возможными путешествия во времени.

Согласно фейнмановскому методу интегралов по траекториям своего рода путешествия в прошлое происходят в масштабе отдельных частиц. В модели Фейнмана частица, движущаяся вперед во времени, эквивалентна античастице, перемещающейся назад во времени. Его математический аппарат позволяет рассматривать пару из частицы и античастицы, которые возникают вместе и затем взаимно уничтожаются, как одну частицу, перемещающуюся по замкнутой петле в пространстве-времени. Чтобы увидеть это, сначала изобразим процесс традиционным способом.

В некоторый момент, скажем в момент А, образуются частица и античастица. Обе они движутся вперед во времени. Позднее, в момент В, они вступают во взаимодействие и аннигилируют. До момента А и после момента В никаких частиц не существует. Тем не менее, следуя за Фейнманом, вы можете взглянуть на это иначе. В момент А возникает единственная частица. Она движется вперед во времени к моменту В, а затем возвращается назад во времени к моменту А. Вместо частицы и античастицы, совместно движущихся вперед во времени, существует лишь один объект, перемещающийся по петле от момента А к моменту В и обратно. Когда объект движется вперед во времени (от момента А к моменту В), он называется частицей. Когда же он перемещается назад во времени (от момента В к моменту А), это античастица, путешествующая вперед во времени (рис. 32).

Такое путешествие во времени способно вызывать наблюдаемые эффекты. Поэтому правомерно спросить: допускает ли квантовая теория путешествия во времени макроскопического масштаба, которые люди могли бы использовать? На первый взгляд кажется, что допускает. Фейнмановские интегралы по траекториям должны охватывать все возможные сценарии, а значит, и те, в которых пространство-время настолько деформировано, что допускает путешествия в прошлое.

Рис. 32. Античастица по Фейнману.

Античастицу можно рассматривать как частицу, путешествующую назад во времени. Тогда виртуальную пару частица—античастица допустимо воспринимать как частицу, движущуюся по замкнутой петле в пространстве-времени.

 

Учитывая эти теоретические соображения, можно было бы надеяться, что прогресс науки и техники позволит нам в конечном счете построить машину времени. И все-таки, даже если считать, что известные законы физики не исключают возможности путешествий во времени, есть ли иные причины сомневаться в том, что они возможны?

Прежде всего, возникает вопрос: если можно путешествовать в прошлое, почему никто не прибыл к нам из будущего и не сказал, как это делается? Не исключено, что имеются веские причины, почему было бы неразумно раскрыть тайну путешествий во времени нам, стоящим на примитивной ступени развития, и, если человеческая натура не изменится радикально, трудно ожидать, что какой-нибудь гость из будущего проговорится. Конечно, кое-кто станет утверждать, будто НЛО — свидетельство того, что нас посещают или инопланетяне, или люди из будущего. (Учитывая расстояния до других звезд, добраться к нам за более или менее приемлемое время инопланетяне могли бы, только перемещаясь быстрее света, так что эти две возможности, видимо, можно считать эквивалентными.) Отсутствие визитеров из будущего правомерно также списать на то, что прошлое зафиксировано, потому что мы наблюдали его и убедились, что оно не имеет деформаций, требуемых для путешествий назад из будущего. С другой стороны, будущее неизвестно и открыто и в нем вполне может встретиться необходимое искривление. Это означало бы, что любые путешествия во времени ограничены будущим по отношению к нам временем. А в настоящем нет никаких шансов на появление капитана Кирка и звездолета «Энтерпрайз».

Сказанное, может, и объясняет, почему мы пока не наблюдаем наплыва туристов из будущего, но не снимает другой проблемы, которая возникнет, если кто-то вернется назад во времени и изменит ход вещей. Как мы тогда избавимся от недоразумений с историей? Представьте себе, например, что кто-то вернулся в прошлое и передал нацистам секрет атомной бомбы. Или вы возвратились назад и убили своего прапрадеда, прежде чем он обзавелся детьми. Есть много версий этого парадокса, но суть у них одна — противоречия, связанные с возможностью свободно изменять прошлое. Похоже, имеется два способа разрешить парадоксы, связанные с путешествиями во времени.

Первый подход можно назвать концепцией согласованной истории. Он предполагает, что, даже если пространство-время деформировано таким образом, что можно переместиться в прошлое, происходящее в пространстве-времени должно быть согласованным решением физических уравнений. Другими словами, вы не сможете переместиться назад во времени, если история уже зафиксировала, что вы не возвращались, не убивали своего прапрадеда и не совершили любых других действий, которые противоречили бы истории того, как вы достигли своего текущего состояния в настоящем времени. Более того, возвратившись в прошлое, вы бы не могли изменить зафиксированную историю — просто следовали бы ей. В данном представлении прошлое и будущее предопределены: они лишают вас свободы воли, возможности поступать, как вам хочется.

Конечно, можно утверждать, что свободная воля все равно иллюзия. Если действительно существует всеобъемлющая физическая теория, которая управляет всем сущим, то следует полагать, что она детерминирует и наши действия. Однако она делает это так, что ее следствия невозможно предвычислить для такого сложного организма, как человеческое существо, и, кроме того, она включает определенный элемент случайности, соответствующий квантово-механическим эффектам. Это позволяет говорить, что наши декларации о свободной воле человека проистекают из невозможности предсказать, что он будет делать. Однако, если человек улетит на космическом корабле и возвратится раньше, чем отправился, мы сможем предсказать, чт о он или она сделает, поскольку это будет частью зафиксированной истории. Таким образом, в подобной ситуации путешественник во времени не обладал бы свободой воли ни в каком смысле.

Другой возможный способ решения парадоксов путешествия во времени можно назвать гипотезой альтернативной истории. Идея его состоит в том, что, когда путешественники во времени возвращаются в прошлое, они попадают в альтернативные истории, которые отличаются от зафиксированной истории. Таким образом, они могут действовать свободно, вне связи со своей прежней историей. Стивен Спилберг вдоволь позабавился, обыгрывая это представление в фильмах «Назад в будущее»: Марти Макфлай, вернувшись в прошлое, смог изменить к лучшему историю отношений своих родителей.

Гипотеза альтернативной истории весьма напоминает то, как Ричард Фейнман объясняет квантовую теорию с помощью интегралов по траекториям. Этот подход утверждает, что у Вселенной нет одной-единственной истории — правильнее считать, что у нее есть все возможные истории, каждая из которых обладает той или иной вероятностью. Однако между методом Фейнмана и гипотезой альтернативной истории, похоже, существует важное различие. В интегралах Фейнмана каждая траектория целиком включает пространство-время и все, что в нем находится. Пространство-время может быть деформировано таким образом, что станет реальным перемещение на ракете в прошлое. Но ракета осталась бы в том же самом пространстве-времени, а значит, в той же самой истории, которая должна оставаться согласованной. Таким образом, фейнмановская теория интегралов по траекториям скорее поддерживает гипотезу согласованной, а не альтернативной истории.

Избежать указанных проблем помогло бы принятие положения, которое можно назвать гипотезой о защите хронологии. Это положение утверждает, что законы физики запрещают перенос информации в прошлое макроскопическими телами. Данная гипотеза не доказана, но есть причины полагать, что она верна. Как показывают вычисления, при деформациях пространства-времени, достаточных для путешествий в прошлое, таким путешествиям способны воспрепятствовать квантово-механические эффекты. Правда, полной уверенности в этом еще нет, и вопрос о возможности путешествий во времени пока остается открытым. Но мы не советуем вам держать по этому вопросу пари: вдруг ваш противник жульничает, зная будущее наперед?

 

1 Перевод Ильи Ратнера. В оригинале этот лимерик звучит так: There was a young lady of Wight // Who traveled much faster than light. // She departed one day,// In a relative way,// And arrived on the previous night. Невольно вспоминается стихотворение Самуила Маршака: Сегодня в полдень пущена ракета.// Она летит куда быстрее света // И долетит до цели в семь утра // Вчера...

 


• Глава одиннадцатая •
СИЛЫ ПРИРОДЫ И ОБЪЕДИНЕНИЕ ФИЗИКИ

Как говорилось в гл 3, было бы очень трудно построить полную объединенную теорию всего во Вселенной одним махом. Вместо этого мы двигались вперед путем создания частных теорий, которые описывают ограниченный круг явлений, пренебрегая другими эффектами или давая им приближенную численную оценку. Известные нам на сегодня законы физики содержат много числовых величин, подобных заряду электрона или отношению масс протона и электрона, которые мы не можем — по крайней мере, пока — вывести из теории. Мы вынуждены определять их опытным путем и подставлять в уравнения. Одни называют эти числа фундаментальными константами, другие — подгоночными коэффициентами.

Но какой бы точки зрения вы ни придерживались, остается весьма примечательным фактом то, что значения подобных чисел как будто специально выбраны так, чтобы сделать возможным развитие жизни. Например, если бы заряд электрона был немного другим, это нарушило бы баланс электромагнитных и гравитационных сил в звездах и они либо не смогли бы сжигать водород и гелий, либо перестали бы взрываться. Можно надеяться, что, в конце концов, будет создана полная, последовательная, объединенная теория, которая вберет в себя все частные теории как приближения и которую не нужно будет подгонять под наблюдаемые факты подбором произвольных постоянных вроде величины заряда электрона.

Поиски такой теории известны как работа по «объединению физики». Эйнштейн в свои последние годы потратил много времени, безуспешно пытаясь нащупать подступы к объединенной теории, но час ее тогда еще не пробил: существовали частные теории гравитационного и электромагнитного взаимодействий, но очень мало было известно о ядерных силах. Кроме того, Эйнштейн отказался признавать реальность квантовой механики, несмотря на ту важную роль, которую сыграл в ее развитии. Однако принцип неопределенности, похоже, является фундаментальным свойством Вселенной, в которой мы живем. Поэтому состоятельная объединенная теория непременно должна включать в себя этот принцип.

Перспективы создания такой теории сегодня выглядят намного реалистичнее, потому что мы гораздо больше знаем о Вселенной. Но следует остерегаться излишней самонадеянности — нас уже посещали ложные озарения! В начале двадцатого столетия, например, считалось, что все можно объяснить в терминах свойств непрерывной материи, таких как упругость и теплопроводность. Открытие строения атома и принципа неопределенности положили решительный конец этому убеждению. И вновь, в 1928 г., лауреат Нобелевской премии физик Макс Борн сказал группе посетителей Геттингенского университета: «Физике, какой мы ее знаем, через шесть месяцев придет конец». Его уверенность основывалась на недавнем открытии Дирака — уравнении, которое описывало электрон. Тогда полагали, что подобное уравнение будет выведено и для протона, единственной известной в то время другой частицы, и это станет концом теоретической физики. Однако открытие нейтрона и ядерных сил перечеркнуло данную возможность. Несмотря на сказанное, существуют основания для осторожного оптимизма: возможно, наши поиски абсолютных законов природы все же близятся к завершению.

Квантовая механика предполагает, что носителями всех сил, то есть взаимодействий между частицами материи, тоже являются частицы. Таким образом, частица материи, скажем электрон или кварк, испускает частицу, выступающую носителем взаимодействия. Отдача от ее испускания изменяет скорость частицы материи, подобно тому как выстрел заставляет пушку откатываться назад. Частица—переносчик взаимодействия сталкивается с другой частицей материи и поглощается ею, изменяя ее движение. В конечном счете испускание и поглощение дает тот же самый результат, как если бы существовала сила, действующая между двумя частицами материи (рис. 33).

Рис. 33. Обмен частицами.

Согласно квантовой теории силы возникают вследствие обмена частицами, выступающими переносчиками взаимодействий.

 

Каждое взаимодействие переносится частицами особого типа. Если частицы, переносящие взаимодействие, обладают большой массой, это затрудняет их образование и обмен ими на значительных расстояниях. Так что взаимодействия, носителями которых они выступают, имеют относительно небольшой радиус действия. И напротив, при переносе взаимодействия частицами, не имеющими собственной массы, радиус действия силы существенно увеличивается. Частицы—переносчики взаимодействий, которыми обмениваются частицы материи, называются виртуальными, потому что, в отличие от «реальных», их нельзя непосредственно обнаружить при помощи детектора частиц. Мы знаем, однако, что они существуют благодаря порождаемому ими и поддающемуся измерению эффекту: они порождают взаимодействие между частицами материи.

Частицы-переносчики можно разделить на четыре категории. Нужно подчеркнуть, что это деление на четыре класса является искусственным, оно принято для удобства построения частных теорий и не несет в себе более глубокого смысла. Большинство физиков надеются выйти в конце концов на объединенную теорию, которая представит все четыре взаимодействия как разные аспекты единственного взаимодействия. Пожалуй, многие согласятся, что это главная цель современной физики.

Первую категорию составляет гравитационное взаимодействие. Это универсальная сила, то есть каждая частица испытывает на себе действие гравитации соразмерно своей массе или энергии. Гравитационное притяжение можно представить как обмен виртуальными частицами, называемыми гравитонами. Гравитация — самая слабая из четырех сил, намного слабее остальных; она настолько слаба, что мы вообще не замечали бы ее, если бы не два ее особых свойства: она может действовать на больших расстояниях, и она всегда притягивает. Это означает, что самые слабые гравитационные силы между отдельными частицами двух больших тел типа Земли и Солнца способны складываться в суммарную, весьма существенную силу. Три другие силы либо короткодействующие, либо могут как притягивать, так и отталкивать, а потому обнаруживают тенденцию к взаимному погашению.

Следующая категория — электромагнитное взаимодействие, возникающее между электрически заряженными частицами, такими как электроны и кварки, но не влияющее на нейтральные частицы типа нейтрино. Электромагнитное взаимодействие намного сильнее гравитации: электрические силы между двумя электронами приблизительно в миллион миллионов миллионов миллионов миллионов миллионов миллионов (единица с сорока двумя нулями) раз сильнее гравитационных. Однако электрический заряд бывает двух типов: положительный и отрицательный. Между двумя положительными или двумя отрицательными зарядами возникает отталкивание, а между положительным и отрицательным — притяжение.

Большое тело вроде Земли или Солнца содержит почти равное число положительных и отрицательных зарядов. Таким образом, притяжение и отталкивание между отдельными частицами почти уравновешивают друг друга и результирующая электромагнитная сила очень невелика. Однако в масштабах атомов и молекул электромагнитные силы доминируют. Электромагнитное притяжение между отрицательно заряженными электронами и положительно заряженными протонами атомного ядра удерживает электроны на орбите вокруг ядра атома, так же как гравитационное притяжение заставляет Землю обращаться вокруг Солнца. Электромагнитное притяжение принято объяснять обменом большим количеством частиц, называемых фотонами. Опять-таки эти фотоны — виртуальные частицы. Но, когда электрон перемещается с одной орбиты на другую, ближе к ядру, высвобождается энергия и испускается реальный фотон — при подходящей длине волны его может регистрировать человеческий глаз или такой детектор фотонов, как, например, фотопленка. И наоборот, когда реальный фотон сталкивается с атомом, он может переместить электрон на более удаленную от ядра орбиту. На это уходит энергия фотона, и потому он поглощается.

Третья категория называется слабым ядерным взаимодействием. В повседневной жизни мы не сталкиваемся с ним непосредственно. Слабое взаимодействие ответственно за радиоактивность — самопроизвольный распад атомных ядер. Природа слабых ядерных сил оставалась не вполне ясной до 1967 г., когда Абдус Салам из Имперского колледжа в Лондоне и Стивен Вайнберг из Гарварда независимо друг от друга предложили теории, которые объединяли слабое взаимодействие с электромагнитным, подобно тому как примерно веком раньше Максвелл объединил учения об электричестве и магнетизме. Теоретические предсказания подтвердились настолько точно, что в 1979 г. Салам и Вайнберг были удостоены Нобелевской премии по физике вместе с еще одним ученым из Гарварда, Шелдоном Глэшоу, который тоже предложил похожую объединенную теорию электромагнитных и слабых ядерных сил.

В четвертую категорию входит самое мощное из всех сильное ядерное взаимодействие. Оно также не имеет непосредственного отношения к нашему повседневному опыту, но это та самая сила, которая скрепляет б о льшую часть окружающего нас мира. Она удерживает кварки внутри протонов и нейтронов и не дает протонам и нейтронам покинуть ядро атома. Если бы не она, отталкивание положительно заряженных протонов разорвало бы все атомные ядра во Вселенной, кроме ядер водорода, состоящих из одного протона. Переносчиком сильного ядерного взаимодействия считается глюон1 — частица, которая взаимодействует только сама с собой и с кварками.

Успешное объединение электромагнитного и слабого ядерного взаимодействий подтолкнуло к множеству попыток присовокупить к ним концепцию сильного ядерного взаимодействия в рамках доктрины, названной «великим объединением». В этом названии есть доля преувеличения: получающиеся теории не такие уж великие и не вполне объединенные, раз они не включают гравитацию2. Кроме того, эти объединенные теории не назовешь полными, поскольку они содержат множество параметров, велечину которых нельзя предсказать теоретически — ее приходится подбирать экспериментально. Но, так или иначе, эти теории могут стать очередным шагом к полной, исчерпывающей объединенной теории.

Главная трудность при поиске теории, объединяющей гравитацию с другими взаимодействиями, состоит в том, что общая теория относительности, описывающая гравитацию, является единственной неквантовой теорией: она не принимает во внимание принцип неопределенности. Частные теории, описывающие все остальные взаимодействия, основываются на квантовой механике, и поэтому для объединения с ними теории гравитации требуется найти способ, позволяющий включить принцип неопределенности в общую теорию относительности, то есть сформулировать квантовую теорию гравитации — задача, которую пока никто не смог решить.

Создать квантовую теорию гравитации оттого так трудно, что в соответствии с принципом неопределенности даже «пустое» пространство заполнено виртуальными парами частица—античастица. В противном случае, если бы «пустое» пространство было действительно совершенно пустым, все поля — гравитационное, электромагнитное и другие — были бы в точности равны нулю. Однако величина поля и скорость ее изменения во времени связаны между собой так же, как положение частицы и ее скорость (то есть изменение положения). Из принципа неопределенности вытекает, что чем точнее мы знаем одну из этих величин, тем менее точны наши знания о другой. Если бы поле в пустом пространстве было в точности равно нулю, оно имело бы и точную (нулевую) величину и точную (опять-таки нулевую) скорость изменения, что противоречило бы принципу неопределенности. Таким образом, должен существовать некоторый минимальный уровень неопределенности или квантовых флуктуаций величины поля.

Эти колебания можно рассматривать как пары частиц, которые вместе появляются в некоторый момент, разлетаются, а затем вновь сближаются и аннигилируют (рис. 34). Это виртуальные частицы, подобные тем, что служат переносчиками взаимодействий. В отличие от реальных частиц, их невозможно непосредственно наблюдать с помощью детекторов частиц. Однако порождаемые ими косвенные проявления, такие как небольшие изменения энергии электронных орбит, поддаются измерению и поразительно точно согласуются с теоретическими предсказаниями. В случае флуктуаций электромагнитного поля речь идет о виртуальных фотонах, а в случае флуктуаций гравитационного поля — о виртуальных гравитонах. Однако флуктуации полей слабого и сильного взаимодействий представляют собой виртуальные пары частиц вещества, таких как электроны или кварки. В подобных виртуальных парах один элемент будет частицей, а другой — античастицей (в случае света и гравитации частицы и античастицы одинаковы).


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.008 сек.)