|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Базальтопластики
Базальтопластик – композит на основе природного материала. Т.к. исходный материал добывается на Украине и производство менее энергоемкое, чем у углеволокон, то базальтовая нить и ткани имеют очень приятные цены! Прочностные характеристики композитов на основе базальтовых волокон занимает достойное место между стеклопластиками и углепластиками. Как и кевлар они обладают высокой ударной прочностью, преобладая над карбоном, доставляют меньше проблем при механической обработке так как являются натуральным продуктом. Эпоксидные смолы Смолы эпоксидные являются одним из лучших видов связующего для большого числа волокнистых композитов, что объясняется следующими причинами: эпоксидные смолы обладают хорошей адгезией (присоединением) к большинству наполнителей и армирующих компонентов(тканям и пр.) разнообразие доступных эпоксидных смол и отвердителей позволяет получить после отверждения материалы с широким сочетанием свойств для различных технологий и с различными механическими характеристиками; в ходе полимеризации между смолой эпоксидной и отвердителями почти не выделяеются летучие вещества и усадка композита мало ощутима, что сильно их отличает от полиэфирных и фенольных смол; прочностные свойства композитов на основе эпоксидного связующего заметно выше, чем у полиэфирных и фенольных смол. Используюемые технологии Для изготовления изделий из композиционных материалов нами используются такие технологии: метод контактного формования (ручная выкладка и полимеризация без давления); прессование в вакуумном мешке; прессование в автоклаве; метод инффузии; вакуумная пропитка.
На фиг. 1 представлен схематический вид полной установки согласно изобретению. Стекло подают в фильеру 1 либо из переднего корпуса печи в расплавленном виде непосредственно в ее верхнюю часть, либо через воронку, содержащую холодное стекло, например, в форме шариков, падающих, например, под действием силы тяжести. Согласно одному или другому способу подачи стекла фильеру 1 обычно выполняют из сплава платина-родий и нагревают ее с помощью эффекта Джоуля таким образом, чтобы снова расплавить стекло или поддерживать его при высокой температуре. Расплавленное стекло стекает тогда в виде множества струек, вытягиваемых в виде пучка 2 волокон с помощью устройства, не представленного на чертеже, которое может также образовывать бобину 3. Эти пучки 2 проходят затем за смазывающее устройство, выполненное в данном случае в виде смазывающего валика 4, который наносит аппрет или шихту на стеклянные волокна. Эта шихта может содержать соединения или их производные, составляющие термопластические волокна 5, которые соединяются со стеклянными волокнами, чтобы образовать композитную нить 6. На фиг. 1 также представлена схематически прядильная головка 7, откуда выдавливаются термопластические волокна 5. Прядильная головка 7 может питаться термопластическим веществом, имеющим, например, форму гранул, которое плавится, затем стекает под давлением через многочисленные отверстия прядильной головки 7, с образованием волокна 5 путем вытягивания и охлаждения. Охлаждение волокон осуществляется путем принудительной конвекции с помощью кондиционирующего устройства 8, форма которого адаптирована к форме прядильной головки 7 и которое генерирует ламинарный поток воздуха, перпендикулярный волокнам. Расход охлаждающего воздуха, температуру и влажность поддерживают постоянными. Волокна 5 направляют затем на валик 9, который позволяет, с одной стороны, собрать их в виде полотна 10, а с другой стороны, изменить их траекторию. Таким образом, можно расположить фильеру 1 и прядильную головку 7 на одном и том же уровне и получить композитные нити на установках, где до сих пор получали только стеклянные волокна, без внесения больших изменений, если это не установка для прядения термопластика. В самом деле, устройства, предложенные ранее для получения композитных нитей, требуют обычно подвода волокна или полотна из стеклянного волокна над фильерой для термопластиков и таким образом установки фильеры для стекла на более высоком уровне. Это приводит обычно к полной модификации структур. После валика 9 полотно 10 из термопластических волокон направляют на вытяжное устройство 11, образованное тремя цилиндрами. Эти цилиндры могут вращаться с одной и той же скоростью или иметь разные скорости, чтобы ускорение осуществлялось в направлении прохождения термопластических волокон. Функция вытяжного устройства 11 заключается в вытягивании волокон 5, а также в придании полотну 10 определенной скорости. Он позволяет также осуществлять разделение между усилием вытяжки и усилием наматывания термопластических волокон 5. Также можно легко изменить скорость цилиндров, чтобы очень точно отрегулировать скорость нанесения термопластического вещества на стеклянное полотно 14. Полотно 10 проходит затем на устройство, состоящее из отклоняющего валика 12 и устройства Вентури 13. Устройство Вентури 13 обеспечивает направление и соединение термопластических волокон в форме полотна 10 с полотном из стеклянных волокон 14, выходящим из фильеры 1. Устройство Вентури 13 обеспечивает только направление термопластического полотна 10 на полотно из стеклянного волокна 14, уже шихтованного, поддерживая термопластические волокна в раздельном состоянии. Наоборот, устройство Вентури 13 не сообщает никакой дополнительной скорости полотну 10, таким образом минимум сжатого воздуха будет подаваться на полотно из стеклянных волокон. Поэтому риск повреждений в полотне из стеклянных волокон, связанный с дополнительной подачей воздуха, а также от направления на него термопластических волокон, ограничен до минимума. Напротив устройства Вентури 13, и, следовательно, напротив термопластических волокон располагают дефлектор 15, например, пластину соответствующей формы. Дефлектор 15, размещающийся сзади полотна из стеклянных волокон, позволяет ограничить переход термопластических волокон в полотно из стеклянных волокон 14. При соединении нитей риск повреждений или раскола стеклянных волокон ограничивается из-за небольшой массы термопластических волокон. После соединения термопластические волокна принимают направление полотна из стеклянных волокон за счет эффекта нисходящего наведенного потока под действием сил тяжести, за счет зажатия между стеклянными волокнами, за счет наматывания, переплетения и трения обоих типов волокон. Можно слегка изменить это устройство, установив дополнительно направляющий валик 27, возможно ведущий и прижимающий валик 17. Модифицированное устройство представлено на фиг. 2. Термопластические волокна тогда соединяются со стеклянными волокнами таким образом, чтобы стык обоих полотен проходил на образующей "прижимающего" валика 17. На фиг. 2 термопластические волокна соединяются со стеклянными волокнами согласно другому способу, который состоит в движении термопластических волокон, между "направляющим" валиком 27 и "прижимающим" валиком 17, где происходит соединение со стеклянными волокнами. Этот прием направления имеет преимущество, заключающееся в точном определении геометрии полотна из термопластических волокон и позволяет получить очень однородную смесь со стеклянными волокнами. Совокупность стеклянных волокон и термопластических волокон направляют затем на устройство 16, которое позволяет соединить эти нити, чтобы образовать композитную нить 6. Эта композитная нить 6 сразу же попадает на бобины 3 с помощью устройства, не представленного на чертеже, которое позволяет вытягивать стеклянные волокна с данной линейной скоростью, поддерживаемой постоянной, чтобы гарантировать линейную желаемую массу. Согласно изобретению, скорость, сообщаемая полотну цилиндрами вытягивающего устройства 11, выше скорости, сообщаемой вытягивающим устройством стеклянным волокнам. Таким образом, при соединении волокон термопластические волокна поступают со скоростью, большей скорости стеклянных волокон. Установка согласно изобретению, позволяет создать сверхвытяжки термопластических волокон в момент смешивания со стеклянными волокнами. Полученная композитная нить 6 состоит таким образом из линейных стеклянных волокон и термопластических гофрированных волокон. Амплитуда этих волнистостей зависит от сверхскорости, сообщаемой термопластическим волокнам, т.е. зависит от разности скоростей между скоростью вытяжки устройства 11 и скоростью вытяжки устройства, образующего бобину 3. Чем больше разница скоростей, тем значительнее амплитуда этих волн, которые имеют термопластические волокна. Таким образом, можно, зная природу термопластического вещества и его способность к усадке, фиксировать эту разницу скорости, чтобы получить композитную нить 6, содержащую после усадки совокупность прямых волокон. Можно также фиксировать эту разницу таким образом, чтобы получить композитную нить 6 с высокой способностью наполнения, которая содержит еще после усадки волнообразные термопластические волокна. Этот последний тип композитной нити полезен для некоторых применений в текстильной промышленности, так как он придает необходимую толщину ткани. Этот способ приводит, таким образом, к образованию бобин композитных нитей, которые в противоположность бобинам, полученным до сих пор, не имеют больше волнистостей, идущих от стеклянных волокон и могут разматываться без проблем. Также возможно (бобины больше не деформируются) убрать манжету, которая может быть снова использована, и разматывать их изнутри. С другой стороны, стеклянные волокна остаются линейными и могут полностью играть роль однонаправленного элемента жесткости в изделиях, выполненных из этих композитных нитей. В установке (фиг. 1, 2) термопластические волокна соединяются со стеклянными волокнами, уже шихтованными и собранными в виде волокна. Другое возможное выполнение, представленное на фиг. 3, состоит в соединении термопластических волокон и стеклянных волокон между фильерой и смазывающим валиком. Для этого валик 12, устройство Вентури 13 и дефлектор 15, которые не представлены на этой фигуре, располагают иным образом в отличие от фиг. 1. Согласно этой конфигурации полотно 18 из термопластических волокон направляют на круг из стеклянных волокон 19, формируя не поверхность, а объем. Эта установка позволяет таким образом соединять не полотно с полотном, а полотно с объемом, что приводит к однородности, которая может быть выше, чем в предшествующем случае, когда соединяется полотно с полотном. Наоборот, направление термопластических волокон на стеклянные волокна до их шихтования может увеличить риск развивания. Смесь волокон подают затем на смазывающий валик 20 и покрывают совокупность волокон раствором шихты. После прохождения валика 20, совокупность волокон принимает форму полотна 21, которое направляют затем на устройство (не представлено), которое соединяет волокна в композитные нити, накатываемые на бобину с помощью вытягивающего устройства (также не представлено). На фиг. 4 показано устройство, позволяющее соединять волокна в промежуточной зоне, т.е. зоне смазывающего валика 22. Соединение полотна из термопластических волокон 23 со стеклянными волокнами 24 происходит на образующей смазывающего валика в момент, когда стеклянные волокна принимают форму полотна. Это устройство позволяет устранить риск разрыва при направлении на жгут волокон и оптимизирует однородность переплетения волокон при соединении термопластических волокон со стеклянным полотном. В самом деле, полотно из стеклянных волокон, которые сближаются в точке соединения, представляют свою наибольшую ширину при образовании, т.е. на смазывающем валике. И эта наибольшая ширина, которая соответствует наибольшим расстояниям между двумя стеклянными волокнами, обеспечивает соединение волокон наиболее однородное при нанесении. Эта конфигурация позволяет осуществить соединение волокон путем направления с помощью, например, устройства Вентури или путем продвижения с помощью направляющего валика. Она также устраняет использование дефлектора, так как его роль может выполнять установка, окружающая смазывающий валик. На фиг. 5, a, b, c представлены схематически поперечные разрезы композитных нитей, полученных разными способами. Фиг. 5 показывает разрез композитной нити, полученной согласно изобретению. Наблюдается однородное распределение термопластических волокон 25 и стеклянных волокон 26. Хорошая однородность композитной нити приводит к наилучшему ее прилипанию. Фиг. 5 b, c представляют поперечные разрезы композитных нитей, полученных другими способами, такими как использование круглой термопластической фильеры, либо через соединение полотна с полотном (фиг. 5b), либо через соединение полотна с полотном (фиг. 5c). В этих двух случаях распределение волокон менее однородно и сердцевина нити является привилегированной зоной для стеклянных волокон 26', 26'' в то время как термопластические волокна 25', 25'' находятся больше на периферии. Заметим, что соединение полотна с полотном приводит к наилучшей однородности. Можно внести несколько модификаций в описанные устройства. Прежде всего смазывающий раствор может содержать фото-протравник, способный инициировать химическую трансформацию шихтования под действием актинического излучения. Такое шихтование позволяет еще увеличить прилипание композитной нити. Чтобы применить этот прием достаточно расположить на протяженности композитной нити источник излучения типа ультрафиолет между устройством соединения и устройством, позволяющим образовать бобину. Можно также говорить о тепловом протравнике, который применяется при тепловой обработке. Данное изобретение можно применять также при получении сложных композитных нитей, т.е. содержащих разные термопластические вещества. Для этого можно наносить волокна разной природы, полученные, например, от нескольких прядильных головок и предварительно соединенные перец направлением на стеклянные волокна.
Заключение. Композиционные материалы постепенно занимает все большее место в нашей жизни. Уже достаточно трудно представить современную стоматологию без композитных материалов. Области применения композиционных материалов многочисленны. Кроме авиационно-космической, ракетной и других специальных отраслей техники, они могут быть успешно применены в энергетическом турбостроении, в автомобильной и горнорудной, металлургической промышленности, в строительстве и т.д. Диапазон применения этих материалов увеличивается день ото дня и сулит еще много интересного. Можно с уверенностью сказать, что это материалы будущего. Список литературы.
1. Современные композиционные материалы, под ред. П.Крока и Л.Броумана, пер. с англ., М., 1978г. 2. Волокнистые композиционные материалы, пер. с англ., М., 1967г. 3. Итоги науки и техники «Композиционные материалы», под ред. Л.П.Кобец, М.-1979г. 4. Большая советская энциклопедия, главн. Ред. А.М.Прохоров, М., 1973г., том 12. 5. В.И. Итин и др./ Письма в ЖТФ том 23 №8 (1997) 1-6. http://stroimsamolet.ru/057.php http://com-posit.com.ua/composite-materials http://elar.urfu.ru/bitstream/10995/3568/6/1358540_lectures_ch_2.pdf
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.) |