АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Движение вектора смещения (вторая задача)

Читайте также:
  1. C) передвижением ионов различных примесей
  2. F) Подготовить примечание к балансу, показывающее движение по счёту отложенного налога для каждого вида временных разниц.
  3. Абсолютное пространство и истинное движение
  4. Автоматическое управление движением с помощью конечных выключателей, пример.
  5. Б.1 Расчет горизонтальных песколовок с прямолинейным движением воды
  6. Б.2 Расчет горизонтальных песколовок с круговым движением воды
  7. Божье Движение
  8. Борьба пап с Фридрихом Барбароссой (Вторая половина XII века)
  9. Булевские вектора и операции для работы с ними
  10. В59. Федеративное движение в Греции IV века до н.э. (на примерах Беотийского и II Афинского морского союзов).
  11. Великое передвижение народов. Падение Западной империи
  12. Воинствующие папы контрреформации (Вторая половина XVI века)

Движение центра масс (первая задача)

Сложение уравнений (1) и (2) приводит к равенству

где мы использовали третий закон Ньютона и где

позиция центра масс системы. Уравнение в итоге запишется в виде

Оно показывает, что скорость центра масс постоянна. Отсюда следует, что полный момент количества движения также сохраняется (сохранение импульса). Позиция и скорость центра масс может быть получена в любой момент времени.

Движение вектора смещения (вторая задача)

Вычитая уравнение (2) из уравнения (1) и преобразуя приходим к уравнению

где мы снова использовали третий закон Ньютона и где (определённый выше) - вектор смещения, направленный от второго тела к первому.

Сила между двумя телами должна быть функцией только а не абсолютных положений и ; в противном случае задача не имеет трансляционной симметрии, то есть законы физики менялись бы от точки к точке. Таким образом можно записать:

где - приведённая масса

Как только мы найдём решение для и , первоначальные траектории можно записать в виде

как может быть показано подстановкой в уравнения для и .

Решение задачи двух тел

Согласно третьему закону Ньютона силы, с которыми тела действуют друг на друга, равны по величине и противоположны по направлению. Таким образом, для задачи двух тел можно записать

Проинтегрировав это уравнение два раза, получим

где a и b – некоторые векторы. Обозначив через r и M координату центра тяжести двух тел и их суммарную массу соответственно

получим

то есть центр масс системы движется с постоянной скоростью. Запишем силы, действующие на каждое из тел, следующим образом

где

Вычитая второе уравнение из первого, получим

где

Векторно умножая последнее уравнение на r и интегрируя, получим

Постоянный вектор h, являющийся постоянной интегрирования, называется кинетическим моментом системы. Взаимное движение тел происходит в плоскости, перпендикулярной этому вектору. Введём систему цилиндрических координат r, φ, z. Единичные векторы вдоль радиальной, трансверсальной и вертикальной оси обозначим как i, j и k. Проекции скорости на радиальную и трансверсальную оси составят

Тогда

В левой части последнего выражения стоит удвоенная площадь треугольника, описываемого радиус-вектором r за единицу времени. Таким образом, это соотношение является математической записью второго закона Кеплера.

Уравнение (1) умножаем скалярно на скорость и интегрируем. Получим

Подробный вывод [показать]

Последнее соотношение является выражением закона сохранения механической энергии в системе.

 


Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)