АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Транзисторный ключ

Читайте также:
  1. Осознанность - это ключ.
  2. От аутогенной тренировки к современному методу Ключ.
  3. Транзисторный преобразователь частоты с отдельным гетеродином
  4. Транзисторный преобразователь частоты со совмещенных гетеродином

Транзисторные ключи выполняются на биполярных или полевых транзисторах. В свою очередь ключи на полевых транзисторах делятся на МДП-ключи и ключи на полевых транзисторах с управляющим р—га-переходом.

Ключи на биполярных транзисторах делятся на насыщенные и ненасыщенные. При анализе транзисторных ключей рассматривают два режима — статический и динамический.

В статическом режиме анализируется закрытое и открытое состояние ключа. В закрытом состоянии ключа на его входе низкий уровень напряжения (сигнал логического нуля), при котором оба перехода смещены в обратном направлении (режим отсечки). При этом коллекторный ток определяется только тепловым током.

При использовании ключа в логических интегральных схемах, в которых обычно применяются транзисторы типа п—р—п, запирающее напряжение положительно и в этом случае имеет место только "условное" запирание транзистора, когда его эмиттерный переход смещен в прямом направлении; однако уровень действующего на его входе напряжения меньше порогового уровня, равного около 0,6 В, и коллекторный ток транзистора относительно мал, т.е. составляет лишь единицы процентов от тока открытого транзистора.

В открытом состоянии ключа на его входе высокий уровень напряжения (сигнал логической единицы). При этом возможны два режима работы открытого транзистора — работа в линейной области выходной характеристики или в области насыщения.

В активной области эмиттерный переход смещен в прямом направлении, а коллекторный — в обратном, при этом для кремниевых транзисторов напряжение на эмиттерном переходе составляет около 0,7 В и коллекторный ток практически линейно зависит от тока базы.

В области Насыщения оба перехода транзистора смещены в прямом направлении и изменение тока базы не приводит к изменению коллекторного тока. Для кремниевых транзисторов ИС напряжение на смещенном в прямом направлении р—n-переходе составляет около 0,8 В, для германиевых оно равно 0,2...0,4 В.

Насыщение ключа достигается увеличением тока базы. Однако при некотором его значении, которое называется базовым током насыщения „, дальнейший рост тока базы практически не приводит к росту коллекторного тока насыщения, при этом напряжение на коллекторе (с учетом коллекторной нагрузки) составляет несколько десятков или сотен милливольт (в ИС около 0,1...0,2 В). Одной из важных характеристик ключа в режиме насыщения является параметр 8 — коэффициент насыщения, равный отношению 1кн/1бн- На границе насыщения 8=1. С увеличением коэффициента насыщения ключа увеличивается его нагрузочная способность, уменьшается влияние различных дестабилизирующих факторов на выходные параметры ключа, но ухудшается быстродействие. Поэтому коэффициент насыщения выбирается из компромиссных соображений, исходя из условий конкретной задачи.

Быстродействие ключевого элемента определяется максимально допустимой частотой следования входных переключающих сигналов. Очевидно, что оно зависит от общей длительности переходного процесса, определяемой инерционностью транзистора и влиянием паразитных параметров (например, перезарядом паразитных емкостей в процессе переключения). Часто для характеристики быстродействия ключевого (логического) элемента используется среднее время задержки сигнала при его передаче через элемент. При конечной длительности фронта входного сигнла задержки включения и выключения отсчитываются на 10- или 50-процентных уровнях входного и выходного сигналов.

Взаимодействие ключей друг с другом осуществляется через элементы связи. Если уровень напряжения на выходе первого ключа высокий, то на входе другого ключа должен быть уровень, при котором второй ключ открывается и работает в заданном режиме, и, наоборот, если первый ключ открыт, то на входе второго ключа должен быть достаточно низкий уровень, при котором второй ключ закрыт. Цепь связи оказывает существенное влияние на переходные процессы, возникающие при переключении, и, следовательно, на быстродействие ключей. Используемые в ключевых устройствах элементы связи показаны на рис. 8.10.

Ключевой каскад на рис. 8.10, а представляет собой каскад по схеме с ОЭ, на входе которого включен резистор Rb, обеспечивающий при заданном входном напряжении Ui требуемый ток насыщения базы

(8.6)

где Ub.=(0,7...0,8) В — напряжение база-эмиттер открытого транзистора (здесь и далее имеются в виду кремниевые транзисторы); S=1,5...2 — коэффициент насыщения; В — коэффициент усиления транзистора по току; и,н=(0,1...0,2) В — напряжение на коллекторе открытого транзистора; Ucc — напряжение питания.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)