АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Бактериофаги (вирусы бактерий)

Читайте также:
  1. II – ЭПИДЕМИОЛОГИЯ
  2. Биологические вирусы.
  3. Биоразнообразие. Уровни организации биосистем
  4. Введение
  5. Возникновение жизни на Земле.
  6. Грунтовые фильтрационные площадки для доочистки сточных вод
  7. ДАВАЙТЕ ЛЕЧИТЬ РАК_______________________ 117
  8. Для справки:
  9. Е годы в Европе принято некоторыми историками считать происходящими 4 страница
  10. Жизнь после смерти
  11. Жизнь продолжается

Бактериофаги (от «бактерия» и греч. phagos - пожирающий) - вирусы, специфически проникающие в бактерии, использующие их биосинтетические системы для своей репродукции и вызывающие их лизис (растворение, разрушение клеток). Впервые явление самопроизвольного лизиса сибиреязвенных бактерий наблюдал один из основоположников отечественной микробиологии Н.Ф. Гамалея (1898). Английский бактериолог Ф. Туорт (1915) описал способность фильтрата стафилококков растворять свежую культуру этих же бактерий. Однако лишь французский ученый Ф. д'Эрелль (1917) правильно оценил это явление, выделив фильтрующийся литический агент из испражнений больных дизентерией. Добавление литического агента к мутной бульонной культуре дизентерийных бактерий приводило к полному просветлению среды. Ана-

Физиология микробов

логичный эффект д'Эррель наблюдал и на плотных питательных средах, засеянных смесью литического агента с соответствующими бактериями. На фоне сплошного бактериального роста появлялись стерильные пятна круглой или неправильной формы - участки лизиса бактерий, названные негативными колониями, или бляшками. Предположив, что имеет дело с вирусами, д'Эрелль выделил этот литический агент с помощью бактериальных фильтров и назвал его бактериофагом - пожирателем бактерий.

Бактериофаги широко распространены в природе. Они обнаружены в воде, почве, пищевых продуктах, различных выделениях из организма людей и животных (фекалии, моча, мокрота, гной и т.д.). Особенно большое количество бактериофагов выделяется в период выздоровления больного человека. В настоящее время эти вирусы выявлены у большинства бактерий, а также у некоторых других микроорганизмов, в частности у грибов. Поэтому бактериофаги в широком смысле слова часто называют просто фагами.

Бактериофаги принято обозначать буквами латинского, греческого или русского алфавита, часто с цифровым индексом, перед которым стоит название вида бактерий (например, фаги Е. coli T2). Для обозначения группы родственных фагов используют родовые и видовые названия микробов, из которых выделены соответствующие фаги: колифаги, стафилофаги, актинофаги, микофаги и т.д.

Морфология и химический состав. Морфологию бактериофагов изучают с помощью электронной микроскопии. Фаги, как и просто организованные вирусы человека, состоят из нуклеиновой кислоты (ДНК или РНК) и белковой оболочки - капсида. Однако между собой они в значительной степени различаются по морфологии. В зависимости от формы, структурной организации и типа нуклеиновой кислоты фаги подразделяют на несколько морфологических типов (рис. 3.9). К I типу относятся нитевидные ДНК-содержащие фаги, взаимодействующие с мужскими особями бактерий (см. раздел 2.2 и главу 5). Геном фагов представлен однонитевой ДНК, заключенной в спиральный капсид. II тип включает мелкие РНК-содержащие и однонитевые ДНК-содержащие фаги, геном которых находится внутри икосаэдрического капсида (головки) с аналогом отростка. К III типу относятся икосаэдрические фаги с коротким отростком, содержащие двунитевую ДНК. IV и V типы - сложные по морфологии ДНК-содержащие фаги, имеющие форму сперматозоида: икосаэдрический капсид головки

Рис. 3.9. Морфологические типы бактериофагов (объяснение в тексте)

соединен с длинным хвостовым отростком. V тип фагов отличается от VI типа тем, что чехол их отростков способен к сокращению. Размеры фагов колеблются от 20 до 800 нм (нитевидный тип).

Рис. 3.10. Строение Т-четного фага (электронограмма)

Наиболее изучены крупные бактериофаги, имеющие форму сперматозоида и сокращающийся чехол отростка (рис. 3.10), например колифаги T2, Т4, Т6 (от англ. type - типовые). У этих фагов молекула двунитевой суперспирализованной ДНК находится внутри головки размером 65-100 нм и защищена капсидом. Капсид состоит из белковых молекул - идентичных полипептидных субъединиц, уложенных по икосаэдрическому (кубическому) типу симметрии. В состав головки также входит полипептид, состоящий из аспарагиновой, глутаминовой кислот и лизина. У некоторых фагов внутри головки находится внутренний гистоноподобный белок, обеспечивающий суперспирализацию ДНК. Хвостовой отросток длиной более 100 нм имеет внутри полый цилиндрический стержень, сообщающийся с головкой, а снаружи - чехол (футляр), способный к сокращению наподобие мышцы. Чехол хвостового отростка образован белковыми субъединицами, уложенными по спиральному типу симметрии, содержит АТФ и ионы Ca. На дистальном конце отростка имеется шестиугольная базальная пластинка с шипами, от которых отходят нитевидные структуры - фибриллы.

У некоторых фагов (например, T2) в дистальной части отростка содержится фермент лизоцим.

Антигенные свойства. Бактериофаги содержат группоспецифические и типоспецифические антигены, обладают иммуногенными свойствами, вызывая синтез специфических антител в организме. Антитела, взаимодействуя с бактериофагами, могут нейтрализовать их литическую активность в отношении бактерий. По типоспецифическим антигенам фаги делят на серотипы.

Резистентность. По сравнению с вирусами человека бактериофаги более устойчивы к факторам окружающей среды. Они инактивируются под действием температуры 65-70 °С, УФ-облучения в высоких дозах, ионизирующей радиации, формалина и кислот. Длительно сохраняются при низкой температуре и высушивании.

Взаимодействие фагов с бактериальной клеткой. Взаимодействие фагов с бактериями может протекать, как и у других вирусов, по продуктивному, абортивному и интегративному типам. При продуктивном типе взаимодействия образуется фаговое потомство, бактерии лизируются; при абортивном типе фаговое потомство не образуется и бактерии сохраняют свою жизнедеятельность, при интегративном типе геном фага встраивается в хромосому бактерии и сосуществует с ней. В зависимости от типа взаимодействия различают вирулентные и умеренные бактериофаги.

Вирулентные бактериофаги взаимодействуют с бактерией по продуктивному типу. Проникнув в бактерию, они репродуцируются с образованием 200-300 новых фаговых частиц и вызывают лизис бактерий. Процесс взаимодействия с бактериями в достаточной мере изучен у бактериофагов, имеющих отросток с сокращающимся чехлом. Он состоит из последовательно сменяющих друг друга стадий и весьма схож с процессом взаимодействия вирусов человека и животных с клеткой хозяина. Однако имеются и некоторые особенности.

Специфическая адсорбция фагов происходит только при соответствии прикрепительных белков вирусов и рецепторов бактериальной клетки липополисахаридной или липопротеиновой природы, находящихся в ее клеточной стенке. На бактериях, лишенных клеточной стенки (протопласты, сферопласты), бактериофаги не могут адсорбироваться. Фаги, имеющие хвостовой отросток, прикрепляются к бактериальной клетке свободным концом отростка (фибриллами базальной пластинки). В результате активации АТФ чехол хвостового отростка сокращается и стержень с помощью лизоцима, растворяющего прилегающий фрагмент клеточной стенки, как бы просверливает оболочку клетки. При этом ДНК фага, содержащаяся в его головке, проходит в форме нити через канал хвостового стержня и инъецируется в клетку, а капсидные оболочки фага остаются снаружи бактерии.

Инъецированная внутрь бактерии нуклеиновая кислота подавляет биосинтез компонентов клетки, заставляя ее синтезировать нуклеиновую кислоту и белки фага. Процесс синтеза вирусных белков и репликация фаговых геномов в бактериальной клетке аналогичны процессу репродукции других вирусов, содержащих двунитевую ДНК. РНК-полимераза клетки транскрибирует некоторые гены фаговой ДНК, в результате чего образуются ранние иРНК. Рибосомы клетки транслируют иРНК, при этом синтезируется целый ряд ферментов, включая те, которые необходимы для репликации фаговой ДНК. Репликация двунитевой ДНК фагов протекает в соответствии с общим механизмом репликации. После начала репликации фаговой ДНК начинается синтез поздних вирусных иРНК, в результате трансляции которых образуется второй набор вирусспецифических белков, в том числе капсидных белков фагов.

После образования компонентов фага происходит самосборка частиц: сначала пустотелые капсиды головок заполняются нуклеиновой кислотой, затем сформированные головки соединяются с хвостовыми отростками. При литической инфекции в клетке появляется еще один поздний вирусспецифический белок - фаговый лизоцим. Этот фермент воздействует на пептидогликановый слой стенки бактерии, делая ее менее прочной. В конце концов под действием внутриклеточного осмотического давления оболочка клетки разрывается и фаговое потомство выходит в окружающую среду вместе с остальным содержимым бактериальной клетки. Весь литический цикл от адсорбции бактериофага на бактерии до его выхода из нее занимает 20-40 мин.

У некоторых фагов механизм адсорбции, проникновения и высвобождения из клеток совершенно иной. Например, у нитевидных фагов на концах капсидной оболочки имеются минорные белки, с помощью которых эти фаги прикрепляются к половым пилям бактерии (см. главу 5). Фаговая ДНК вместе с минорным белком проникают в цитоплазму клетки через ее половые пили. После репликации нуклеиновой кислоты фагов вновь синтезированные белки фаговой оболочки располагаются на клеточной мембране. Сборка и высвобождение нитевидных фагов происходят путем просачивания ДНК через цитоплазматическую мембрану и клеточную стенку бактерии, во время которого они приобретают белковые капсиды. Бактериальная клетка при этом сохраняет свою жизнеспособность.

Взаимодействие фагов с бактериальной клеткой характеризуется определенной степенью специфичности, что явилось основанием для подразделения их на поливалентные фаги, способные взаимодействовать с родственными видами бактерий, моновалентные фаги, взаимодействующие с бактериями определенного вида, и типовые фаги, взаимодействующие с отдельными типами (вариантами) данного вида бактерий.

Умеренные бактериофаги, в отличие от вирулентных, взаимодействуют с чувствительными бактериями либо по продуктивному, либо по интегративному типу. Продуктивный цикл умеренного фага идет в той же последовательности, что и у вирулентных фагов, и заканчивается лизисом клетки. При интегративном типе взаимодействия ДНК умеренного фага встраивается в хромосому бактерии, причем в строго определенную гомологическую область хромосомы, реплицируется синхронно с геномом размножающейся бактерии, не вызывая ее лизиса. ДНК бактериофага, встроенная в хромосому бактерии, называется профагом, а культура бактерий, содержащих профаг, - лизогенной. Само же биологическое явление сосуществования бактерии и умеренного бактериофага носит название лизогении (от греч. lysis - разложение, genea - происхождение). Профаг, ставший частью хромосомы размножающейся бактерии, передается по наследству от клетки к клетке неограниченному числу потомков.

Лизогенные бактерии не образуют структурные вирусные белки и, следовательно, фаговое потомство. В основе сдерживающего механизма репродукции фагов лежит образование в бактерии специфического репрессора -- низкомолекулярного белка, по-

давляющего траскрипцию фаговых генов. Биосинтез репрессора детерминируется генами профага. Наличием репрессора можно объяснить способность лизогенных бактерий прибретать иммунитет (невосприимчивость) к последующему заражению гомологичными или близкородственными фагами. Под иммунитетом в данном случае понимается такое состояние бактерии, при котором исключаются процесс вегетативного размножения вышеуказанных фагов и лизис клетки. Однако термин «лизогения» отражает потенциальную возможность лизиса бактерии, содержащей профаг. Действительно, профаги некоторой части лизогенной культуры бактерий могут спонтанно (самопроизвольно) или направленно под действием ряда физических или химических факторов дерепрессироваться, исключаться из хромосомы и переходить в вегетативное состояние. Этот процесс заканчивается продукцией фагов и лизисом бактерий. Частота спонтанного лизиса бактерий в лизогенных культурах весьма незначительна. Частоту лизиса бактерий можно значительно увеличить, воздействуя на лизогенную культуру индуцирующими агентами: УФ-лучами, ионизирующим излучением, перекисными соединениями, митомицином С и др. Сам же феномен воздействия, приводящий к инактивации репрессора, называется индукцией профага. Явление индукции используют в генетической инженерии. Однако спонтанный лизис лизогенных культур может нанести вред микробиологическому производству. Так, если микроорганизмы - продуценты биологически активных веществ - оказываются лизогенными, существует опасность перехода фага в вегетативное состояние, что приведет к лизису производственного штамма этого микроба.

Геном профага может придавать бактерии новые, ранее отсутствовавшие у нее свойства. Этот феномен изменения свойств микроорганизмов под влиянием профага получил название фаговой конверсии (от лат. conversion - превращение). Конвертироваться могут морфологические, культуральные, биохимические, антигенные и другие свойства бактерий. Например, только лизогенные культуры дифтерийной палочки способны вызвать болезнь (дифтерию), так как содержат в хромосоме профаг, ответственный за синтез белкового экзотоксина.

Умеренные фаги могут быть дефектными, т.е. неспособными образовывать зрелые фаговые частицы ни в естественных усло-

виях, ни при индукции. Геном некоторых умеренных фагов (Р1) может находиться в цитоплазме бактериальной клетки в так называемой плазмидной форме, не включаясь в ее хромосому. Такого рода умеренные фаги используют в качестве векторов в генетической инженерии.

Практическое применение фагов. Бактериофаги используют в лабораторной диагностике инфекций при внутривидовой идентификации бактерий, т.е. определении фаговара (фаготипа). Для этого применяют метод фаготипирования, основанный на строгой специфичности действия фагов: на чашку Петри с плотной питательной средой, засеянной «газоном» чистой культурой возбудителя, наносят капли различных диагностических типоспецифических фагов. Фаговар бактерии определяется тем типом фага, который вызвал ее лизис (образование стерильного пятна, бляшки или негативной колонии). Метод фаготипирования позволяет выявить источник инфекции и проследить путь возбудителя от источника до восприимчивого организма (эпидемиологическое маркирование).

По содержанию бактериофагов в объектах окружающей среды можно судить о присутствии в них соответствующих патогенных бактерий. Подобные исследования проводят при санитарномикробиологическом исследовании воды. Например, в системах из поверхностных источников воды перед подачей ее в распределительную сеть определяют наличие колифагов. Колифаги являются одними из санитарно-показательных микробов, характеризующих фекальное загрязнение воды.

Фаги применяют также для лечения и профилактики ряда бактериальных, чаще всего кишечных инфекций. Производят брюшнотифозный, дизентерийный, синегнойный, стафилококковый фаги и комбинированные препараты (колипротейный, пиобактериофаги и др.). Бактериофаги назначают по показаниям перорально, парентерально или местно в виде жидких, таблетированных форм, свечей или аэрозолей. Отличительной чертой фагов является полное отсутствие у них побочного действия. Однако лечебный и профилактический эффект фагов умеренный, поэтому их необходимо применять в комплексе с другими лечебными и профилактическими мероприятиями. Бактериофаги широко применяют в генетической инженерии в качестве векторов для получения рекомбинантных ДНК.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)