АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Механические колебания и волны

Читайте также:
  1. Биомеханические характеристики техники метания копья.
  2. Влияние деформационного старения на механические свойства малоуглеродистой стали
  3. Влияние надреза на механические свойства стали
  4. И ЕГО ХАРАКТЕРИСТИКА ( величина, происхождение, колебания, механизм поддержания).
  5. Иссохший берег и волны.
  6. Как классифицируются электромеханические приборы по принципу действия?
  7. Механические волны
  8. Механические методы.
  9. Механические свойства
  10. Механические свойства минералов.
  11. Механические свойства стали после ТО

Краткие теоретические сведения

1.1. Дифференциальное уравнение гармонических колебаний имеет вид:

.

Решением этого уравнения является закон гармонических колебаний:

.

где — отклонение колеблющейся величины от положения равновесия в момент времени t; — амплитуда колебаний; — фаза колебаний; — циклическая (круговая) частота; — период колебаний; — частота; — начальная фаза колебаний. и определяются из начальных условий.

1.2. Скорость точки, совершающей гармонические колебания:

,

где — амплитуда скорости.

1.3. Ускорение точки, совершающей гармонические колебания:

где — амплитуда ускорения.

1.4. Период и круговая частота свободных колебаний пружинного маятника:

, ,

где — масса груза; — жесткость (коэффициент упругости) пружины.

1.5. Период и круговая частота малых свободных колебаний физического маятника:

, ,

где — масса маятника; — момент инерции маятника относительно оси вращения; — расстояние от оси вращения до центра тяжести маятника; — ускорение свободного падения.

1.6. Период и круговая частота малых свободных колебаний математического маятника:

, ,

где — длина маятника.

1.7. Потенциальная энергия гармонических колебаний пружинного маятника:

.

1.8. Кинетическая энергия гармонических колебаний пружинного маятника:

.

 

 

1.9. Полная энергия гармонических колебаний пружинного маятника:

.

1.10. Дифференциальное уравнение затухающих колебаний пружинного маятника:

,

где — коэффициент затухания; — коэффициент вязкого трения; — круговая частота свободных колебаний маятника.

1.11. Решением дифференциального уравнения затухающих колебаний является закон затухающих колебаний:

,

где — амплитуда затухающих колебаний; — круговая частота затухающих колебаний.

1.12. Логарифмический декремент затухания:

.

1.13.Время релаксации:

.

1.14. Добротность:

.

1.15. Дифференциальное уравнение вынужденных колебаний:

,

где — циклическая частота вынуждающей силы, — максимальное значение (амплитуда) внешней силы.

1.16. Решение дифференциального уравнения для установившихся вынужденных колебаний:

,

где — амплитуда вынужденных колебаний; ; — сдвиг фазы между смещением и внешней силой.

1.17. Условие механического резонанса:

,

и амплитуда резонансных колебаний:

.

1.18. Связь длины и скорости распространения волны:

.

1.19. Скорость распространения упругих продольных волн в тонких стержнях:

,

где — модуль Юнга; — плотность материала стержня.

1.20 Скорость распространения упругих волн в газах:

,

где — показатель адиабаты; — давление; — плотность газа.

 

1.21. Уравнение плоской гармонической волны:

,

где — смещение частиц среды в точке в момент времени ; — волновое число; — амплитуда волны.


1 | 2 | 3 | 4 | 5 | 6 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)