|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Общие основы
Хеширование — преобразование входного массива данных произвольной длины в выходную битовую строку фиксированной длины. Такие преобразования также называются хеш-функциями или функциями свёртки, а их результаты называют хешем, хеш-кодом или дайджестом сообщения. Хеширование применяется для сравнения данных: если у двух массивов хеш-коды разные, массивы гарантированно различаются; если одинаковые — массивы, скорее всего, одинаковы. В общем случае однозначного соответствия между исходными данными и хеш-кодом нет в силу того, что количество значений хеш-функций меньше, чем вариантов входного массива; существует множество массивов, дающих одинаковые хеш-коды — так называемые коллизии. Вероятность возникновения коллизий играет немаловажную роль в оценке качества хеш-функций. Существует множество алгоритмов хеширования с различными характеристиками (разрядность, вычислительная сложность, криптостойкость и т. п.). Выбор той или иной хеш-функции определяется спецификой решаемой задачи. Хеш-функция – это некоторая функция h(K), которая берет некий ключ K и возвращает адрес, по которому производится поиск в хеш-таблице, чтобы получить информацию, связанную с K. Например, K – это номер телефона абонента, а искомая информация – его имя. Функция в данном случае нам точно скажет, по какому адресу найти искомое. Коллизия – это ситуация, когда h(K1) = h(K2), в то время как K1 ≠ K2. В этом случае, очевидно, необходимо найти новое место для хранения данных. Очевидно, что количество коллизий необходимо минимизировать. Хорошая хеш-функция должна удовлетворять двум требованиям: · ее вычисление должно выполняться очень быстро; · она должна минимизировать число коллизий. Итак, первое свойство хорошей хеш-функции зависит от компьютера, а второе – от данных. Если бы все данные были случайными, то хеш-функции были бы очень простые (несколько битов ключа, например). Однако на практике случайные данные встречаются крайне редко, и приходится создавать функцию, которая зависела бы от всего ключа. Теоретически невозможно определить хеш-функцию так, чтобы она создавала случайные данные из реальных неслучайных файлов. Однако на практике реально создать достаточно хорошую имитацию с помощью простых арифметических действий. Более того, зачастую можно использовать особенности данных для создания хеш-функций с минимальным числом коллизий (меньшим, чем при истинно случайных данных). Возможно, одним из самых очевидных и простых способов хеширования является метод середины квадрата, когда ключ возводится в квадрат и берется несколько цифр в середине. Здесь и далее предполагается, что ключ сначала приводится к целому числу, для совершения с ним арифметических операций. Однако такой способ хорошо работает до момента, когда нет большого количества нолей слева или справа.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |