АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Теплопроводность при нестационарном режиме

Читайте также:
  1. Конвекция, теплопроводность, тепловое излучение, испарение влаги, дыхание.
  2. ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕПЛОПРОВОДНОСТИ ПРИ НЕСТАЦИОНАРНОМ РЕЖИМЕ.
  3. Стационарная теплопроводность
  4. Стационарная теплопроводность через плоскую стенку
  5. Стационарная теплопроводность через цилиндрическую стенку
  6. Тема 1. Теплопроводность.
  7. Теплопроводность
  8. Теплопроводность
  9. Теплопроводность
  10. ТЕПЛОПРОВОДНОСТЬ
  11. Теплопроводность в многослойной плоской стенке. Эквивалентный коэффициент теплопроводности.
  12. Теплопроводность в однослойной плоской стенке.

Нестационарная теплопроводность – процесс при котором температура в заданной точке твердого тела изменяется во времени совокупность указанных температур образует нестационарное температурное поле, нахождение которого и является основной задачей нестационарной теплопроводности.

Задачу об отыскании трехмерного температурного поля можно сформулировать в соответствии принципами, изложенными в разделе «математическая формулировка задач теплообмена». Формулировка задачи включает уравнение теплопроводности: , где – коэффициент температуропроводности м2/с, а также условия однозначности, позволяющие выделить единственное решение из множества решений уравнения, различающихся значением констант итегрирования.

Условия однозначности включают начальные и граничные условия. Начальные условия задают значения искомой функции t в начальный момент времени по всей области D. В качестве области D, в которой необходимо найти температурное поле, будем рассматривать прямоугольный параллелепипед с размерами 2d, 2ly, 2lz, например, элемент строительной конструкции. Тогда начальные условия можно записать в виде: при t =0 и -d£х£d; - ly£у£ly; -lz£z£lz имеем t = t(x, y, z,0) = t0(x, y, z). Из этой записи видно, что начало декартовой системы координат расположено в центре симметрии параллелепипеда.

Граничные условия сформулируем в форме граничных условий III рода, часто встречающихся на практике. Граничные условия III рода задают для любого момента времени на границах области D коэффициент теплоотдачи и температуру окружающей среды. В общем случае на различных участках поверхности S области D эти величины могут быть различными. Для случая одинакового коэффициента теплоотдачи a на всей поверхности S и всюду одинаковой температуры окружающей среды tж граничные условия III рода при t >0 можно записать в виде: ; ;

где . S – поверхность, ограничивающая область D.

Температура в каждом из трех уравнений берется на соответствующей грани параллелепипеда.

Рассмотрим аналитическое решение сформулированной выше задачи в одномерном варианте, т.е. при условии ly,lz»d. В этом случае требуется найти температурное поле вида t = t(x, t). Запишем формулировку задачи:

уравнение ;

начальное условие: при t = 0 имеем t(x, 0) = t0 = const;

граничное условие: при x = ±d, t > 0 имеем .

В соответствии с этими выражениями имеется бесконечная пластина толщиной 2d, изготовленная из материала с коэффициентом темературопроводности а и обладающая в начальный момент времени температурой t0. пластина резко переносится в среду с температурой tж и коэффициентом теплоотдачи a. С этого момента температура в пластине изменяется так, чтобы удовлетворялось уравнение . Задача состоит в том, чтобы получить конкретную формулу t = t(x, t), позволяющую найти температуру t в любой точке пластины в произвольный момент времени.

Сформулируем задачу в безразмерных переменных, это позволит сократить записи и сделает решение более универсальным. Безразмерная температура равна , безразмерная координата равна Х = х/d. Подставив эти величины в уравнение получим , где - число Фурье (безразмерное время).

Начальное условие запишется в следующем виде: Fo = 0; Q = 1.

Граничное условие запишется как: Fo > 0; Х =1; , где число Био.

Формулировка задачи в безразмерном виде содержит единственный параметр – число Био, которое в данном случае является критерием, так как составлено только из величин, входящих в условие однозначности. Использование числа Био связано с нахождением температурного поля в твердом теле, поэтому в знаменателе Bi – теплопроводность твердого тела. Bi – наперд заданный параметр и является критерием.

Если рассматривать 2 процесса нестационарной теплопроводности с одинаковыми числами Био, то, согласно третьей теореме подобия, эти процессы подобны. Это значит, что в сходственных точках (т.е. при Х12; Fo1=Fo2) безразмерные температуры будут численно равны: Q1=Q2. следовательно, произведя один расчет в безразмерном виде, мы получим результат, справедливый для класса подобных явлений, которые могут различаться размерными параметрами a, l, d, t0 и tж.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)