|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Теплопроводность при нестационарном режимеНестационарная теплопроводность – процесс при котором температура в заданной точке твердого тела изменяется во времени совокупность указанных температур образует нестационарное температурное поле, нахождение которого и является основной задачей нестационарной теплопроводности. Задачу об отыскании трехмерного температурного поля можно сформулировать в соответствии принципами, изложенными в разделе «математическая формулировка задач теплообмена». Формулировка задачи включает уравнение теплопроводности: , где – коэффициент температуропроводности м2/с, а также условия однозначности, позволяющие выделить единственное решение из множества решений уравнения, различающихся значением констант итегрирования. Условия однозначности включают начальные и граничные условия. Начальные условия задают значения искомой функции t в начальный момент времени по всей области D. В качестве области D, в которой необходимо найти температурное поле, будем рассматривать прямоугольный параллелепипед с размерами 2d, 2ly, 2lz, например, элемент строительной конструкции. Тогда начальные условия можно записать в виде: при t =0 и -d£х£d; - ly£у£ly; -lz£z£lz имеем t = t(x, y, z,0) = t0(x, y, z). Из этой записи видно, что начало декартовой системы координат расположено в центре симметрии параллелепипеда. Граничные условия сформулируем в форме граничных условий III рода, часто встречающихся на практике. Граничные условия III рода задают для любого момента времени на границах области D коэффициент теплоотдачи и температуру окружающей среды. В общем случае на различных участках поверхности S области D эти величины могут быть различными. Для случая одинакового коэффициента теплоотдачи a на всей поверхности S и всюду одинаковой температуры окружающей среды tж граничные условия III рода при t >0 можно записать в виде: ; ; где . S – поверхность, ограничивающая область D. Температура в каждом из трех уравнений берется на соответствующей грани параллелепипеда. Рассмотрим аналитическое решение сформулированной выше задачи в одномерном варианте, т.е. при условии ly,lz»d. В этом случае требуется найти температурное поле вида t = t(x, t). Запишем формулировку задачи: уравнение ; начальное условие: при t = 0 имеем t(x, 0) = t0 = const; граничное условие: при x = ±d, t > 0 имеем . В соответствии с этими выражениями имеется бесконечная пластина толщиной 2d, изготовленная из материала с коэффициентом темературопроводности а и обладающая в начальный момент времени температурой t0. пластина резко переносится в среду с температурой tж и коэффициентом теплоотдачи a. С этого момента температура в пластине изменяется так, чтобы удовлетворялось уравнение . Задача состоит в том, чтобы получить конкретную формулу t = t(x, t), позволяющую найти температуру t в любой точке пластины в произвольный момент времени. Сформулируем задачу в безразмерных переменных, это позволит сократить записи и сделает решение более универсальным. Безразмерная температура равна , безразмерная координата равна Х = х/d. Подставив эти величины в уравнение получим , где - число Фурье (безразмерное время). Начальное условие запишется в следующем виде: Fo = 0; Q = 1. Граничное условие запишется как: Fo > 0; Х =1; , где – число Био. Формулировка задачи в безразмерном виде содержит единственный параметр – число Био, которое в данном случае является критерием, так как составлено только из величин, входящих в условие однозначности. Использование числа Био связано с нахождением температурного поля в твердом теле, поэтому в знаменателе Bi – теплопроводность твердого тела. Bi – наперд заданный параметр и является критерием. Если рассматривать 2 процесса нестационарной теплопроводности с одинаковыми числами Био, то, согласно третьей теореме подобия, эти процессы подобны. Это значит, что в сходственных точках (т.е. при Х1=Х2; Fo1=Fo2) безразмерные температуры будут численно равны: Q1=Q2. следовательно, произведя один расчет в безразмерном виде, мы получим результат, справедливый для класса подобных явлений, которые могут различаться размерными параметрами a, l, d, t0 и tж.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |