АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Bioplastics and biodegradation

Читайте также:
  1. Bioplastic types
  2. Bioplastic types
  3. Environmental impact
  4. Market and cost

The terminology used in the bioplastics sector is sometimes misleading. Most in the industry use the term bioplastic to mean a plastic produced from a biological source. All (bio- and petroleum-based) plastics are technically biodegradable, meaning they can be degraded by microbes under suitable conditions. However, many degrade so slowly that they are considered non-biodegradable. Some petrochemical-based plastics are considered biodegradable, and may be used as an additive to improve the performance of commercial bioplastics. Non-biodegradable bioplastics are referred to as durable. The biodegradability of bioplastics depends on temperature, polymer stability, and available oxygen content. The European standard EN13432, published by the International Organization for Standardization, defines how quickly and to what extent a plastic must be degraded under the tightly controlled and aggressive conditions (at or above 140 °F) of an industrial composting unit for it to be considered biodegradable. This standard is recognized in many countries, including all of Europe, Japan and the US. However, it applies only to industrial composting units and does not set out a standard for home composting. Most bioplastics (e.g. PH) only biodegrade quickly in industrial composting units. These materials do not biodegrade quickly in ordinary compost piles or in the soil/water. Starch-based bioplastics are an exception, and will biodegrade in normal composting conditions.

The term "biodegradable plastic" has also been used by producers of specially modified petrochemical-based plastics that appear to biodegrade. Biodegradable plastic bag manufacturers that have misrepresented their product's biodegradability may now face legal action in the US state of California for the misleading use of the terms biodegradable or compostable. Traditional plastics such as polyethylene are degraded by ultra-violet (UV) light and oxygen. To prevent this, process manufacturers add stabilising chemicals. However with the addition of a degradation initiator to the plastic, it is possible to achieve a controlled UV/oxidation disintegration process. This type of plastic may be referred to as degradable plastic or oxy-degradable plastic or photodegradable plastic because the process is not initiated by microbial action. While some degradable plastics manufacturers argue that degraded plastic residue will be attacked by microbes, these degradable materials do not meet the requirements of the EN13432 commercial composting standard. The bioplastics industry has widely criticized oxo-biodegradable plastics, which the industry association says do not meet its requirements. Oxo-biodegradable plastics – known as "oxos" – are conventional petroleum-based products with some additives that initiate degradation. The ASTM standard used by oxo producers is just a guideline. It requires only 60% biodegradation, P-Life is an oxo plastic claiming biodegradability in soil at a temperature of 23 degrees Celsius reaches 66% after 545 days. Dr Baltus of the National Innovation Agency, has said that there is no proven evidence that bio-organisms are really able to consume and biodegrade oxo plastics.

Recycling

There are also concerns that bioplastics will damage existing recycling projects. Packaging such as HDPE milk bottles and PET water and soft drinks bottles is easily identified and hence setting up a recycling infrastructure has been quite successful in many parts of the world, although only 27% of all plastics actually get recycled. However, plastics like PET do not mix with PLA, yielding unusable recycled PET if consumers fail to distinguish the two in their sorting. The problem could be overcome by ensuring distinctive bottle types or by investing in suitable sorting technology. However, the first route is unreliable, and the second costly.

The biggest problem with plastic recycling is that it is labour-intensive. This is because it is difficult to automate the sorting process. Containers are usually made from a single type of plastic, making them relatively easy to sort but other plastic products, such as mobile phones, usually have components made from different types of plastic. New research and development programmes are being set up to improve disassembling technologies and to increase the recovery and recycling rates of plastic products. However, with the exception of high value plastics like PET, there is no real economic or environmental case for expensive sorting machinery, since virgin polymer is so cheap and readily available. Virgin polymer is derived from a waste product in the oil refining process, and the same amount of oil would be extracted even if plastics did not exist. In Germany they use thermal-recycling to convert waste plastics into energy.


1 | 2 | 3 | 4 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)