АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Третий этап – превращение экологии в комплексную науку (50е г. 20в по наст вр)

Читайте также:
  1. I. ОСНОВНЫЕ ПОНЯТИЯ (ТЕРМИНЫ) ЭКОЛОГИИ. ЕЕ СИСТЕМНОСТЬ
  2. Блюбери Хилл и превращение в мумию Ленина
  3. Вклад Энгельса в экономическую науку, «Анти-Дюринг».
  4. Влияние легирующих элементов на превращение переохлажденного аустенита.
  5. Внутренняя среда организма человека. Группы крови. Переливание крови. Иммунитет. Обмен веществ и превращение энергии в организме человека. Витамины
  6. Второй и третий законы термодинамики
  7. Заместитель главного инженера по охране труда, промышленной безопасности и экологии (далее по тексту - заместитель главного инженера по охране труда).
  8. Идеологему «Москва – Третий Рим» впервые обосновалФилофей
  9. ИСТОРИЧЕСКИ ПЕРВЫЕ ЗАКОНЫ ЭКОЛОГИИ, УСТАНАВЛИВАЮЩИЕ ЗАВИСИМОСТЬ ОРГАНИЗМОВ ОТ ФАКТОРОВ СРЕДЫ
  10. Классификации экологии
  11. Краткий обзор зарождения, становления и развития экологии.
  12. Миф третий: «Я должен быть для всех хорошим».

Второй этап - оформление экологии в самостоятельную отрасль знаний. (60ег. 19в – 50е 20века)

Начало этапа ознаменовалось выходом работ русских ученых К. Ф. Рулье, Н. А. Северцова, В. В. Докучаева, впервые обосновавших ряд принципов и понятий экологии, которые не утратили своего значения и до настоящего времени. Не случайно поэтому американский эколог Ю. Одум считает В. В. Докучаева одним из основателей экологии. В конце 70-х гг. ХIХ в. немецкий гидробиолог К. Мебиус вводит важнейшее понятие о биоценозе как о закономерном сочетании организмов в определенных условиях среды.

Неоценимый вклад в развитие основ экологии внес Ч. Дарвин, вскрывший основные факторы эволюции органического мира. Немецкий биолог-эволюционист Э. Геккель первый понял, что это самостоятельная и очень важная область биологии, и назвал ее экологией. В своем капитальном труде «Всеобщая морфология организмов» он писал: «Под экологией мы понимаем сумму знаний, относящихся к экономике природы.» Вернандский, Гаузер, Тенслер, Сукачев, Раункер.

Третий этап – превращение экологии в комплексную науку (50е г. 20в по наст вр).

Включающая в себя науки об охране ОС. Планка, Миллер, Наумов, Бигон, Гиляров и др.
Крашенинников С.П: изучал Сибирь, на Камчатке собрал уникальные данные(раст.,жив)
Рулье К.Ф: проф. Моск. Универ-та, один из первых читал лекции о достижениях экологии, возглавлял экол направление в зоогеографии.
Северцев Н.А: основоположник зоогеографии, исследовал экологию Западного Зауралья, Запад Сибири; собрал геолог-ие палеонтолог-е коллекции, коллекцию раст Урала.
Докучаев В.В: русский геолог и почвовед, создатель учения о почве, открыл основные закономерности генезиса и географию расположения почв «Русский чернозем»; воспитал Вернандского.
Вернадский В.И: основ-к геохимии, биогеохимии, учение о биосфере и ноосфере; выдвинул идею о связи кристаллической формы с физ-хим свойством строении в-ва, исследовал силикаты, провел первые поиски местонах-я радия и урана.
Сукачев В.Н: лесовод, географ, ввел термин биогеоценоз, принял участие в организации заповедника «Леснов».

Бауэр Э.С: совр. биолог, сформировал принцип устойчивого неравновесия живых систем (все структуры живых клеток на молекулярном уровне заряжены «лишней» энергией).
Гаузе Г.Б: основ-к экологии, научная работа посвящена протозоологии. Принцип конкурентности: 2 вида не могут устойчиво существовать в ограниченном пространстве, если числен-ть обоих видов лимиты одним жизнен. важных ресурсов.
Кошкаров Д.Н: зоолог и эколог совр, заним-ся экологи-ми исследованиями и природоохранной деятельностью.

 

 

3) Методы. Математическое моделирование.
а)Теоретические
б) Эмпирические (полевые: позволяют обновить установить общую картину развития природ в конкретном регионе и лабораторные)
Метод моделирования: 1) полевые исследования: маршрутные(позволяют выявить наличие экол объекта на исследуемой территории. 2) стационарные (длительно наблюдать за одним и тем же объектом на определ территории).

В экологии широкое распространение получил метод математического моделирования как средство изучения и прогнозирования природных процессов.

Суть метода заключается в том, что с помощью математических символов строится абстрактное упрощенное подобие изучаемой системы. Затем, меняя значение отдельных параметров, исследуют, как поведет себя данная искусственная система, т. е. как изменится конечный результат.

Модели строят на основании сведений, накопленных в полевых наблюдениях и экспериментах.
Моделирование – метод опосредованного практического и теоретического оперирования объектом, когда исследуется не сам интересующий объект непосредственно, а вспомогательная, искусственная или естественная система (модель), соответствующая свойствам реального объекта. Модели: реальные и идеальные(знаковые): вербальные, графические и математические.

 

 

4) Экологический мониторинг (мониторинг окружающей среды) — это комплексная система наблюдений за состоянием окружающей среды, оценки и прогноза изменений состояния окружающей среды под воздействием природных и антропогенных факторов.

Направления: импактный(в местах локального загрязнения), региональный и фоновый.
Уровни: санитарный, экологический, биосферный.
Реймерс (9видов): авиационный, базовый, биологический, глобальный, дистационный, импактный, космический, ОС, региональный.
Принципы: комплексный, непрерывность контроля, единство целей и задач исследований, достоверность исследования, одновременность.

 

 

5) Биоиндикация. Метод позволяет судить о составе ОС по состоянию её биоты. Объектами явл-ся: природные объекты, их свойства, процессы, протекающие в ОС.
Принципы выбора биоиндикации по Одуму:

а) Стенотопные виды явл-ся лучшим индикатором.
б) Более крупные виды лучшие индикаторы
в) При выделении вида необходимо иметь данные о нем.
г) Численные соотношения разных видов более показательны.
Уровни исследования: видовой, биоценотический.
Виды биоиндикации: неспицифическое, спец-ое.

Методы: 1) регистрирующие; 2) по аккумуляции свойства растений и животных, накапливающие те или иные хим. вещества.

 

6) Уровни организации живой природы

Молекулярный. Любая живая система, как бы сложно она ни была организована, состоит из биологических макромолекул: нуклеиновых кислот, белков, полисахаридов, а также других важных органических веществ. С этого уровня начинаются разнообразные процессы жизнедеятельности организма: обмен веществ и превращение энергии, передача наследственной информации и др.

Клеточный. Клетка - структурная и функциональная единица, а также единица развития всех живых организмов, обитающих на Земле. На клеточном уровне сопрягаются передача информации и превращение веществ и энергии.

Организменный. Элементарной единицей организменного уровня служит особь, которая рассматривается в развитии - от момента зарождения до прекращения существования - как живая система. На этом уровне возникают системы органов, специализированных для выполнения различных функций.

Популяционно-видовой. Совокупность организмов одного и того же вида, объединенная общим местом обитания, в которой создается популяция - надорганизменная система. В этой системе осуществляются элементарные эволюционные преобразования - процесс микроэволгоции.

Биоценотический. Биоценоз –совокупность популяций раст, жив, бакт, грибов, совместно обитающих в одних и тех же условиях сред и явл-ся составной частью БГЦ.

Биогеоценотический. Биогеоценоз - совокупность организмов разных видов 'и различной сложности организации с факторами среды их обитания. В процессе совместного исторического развития организмов разных систематических групп образуются динамичные, устойчивые сообщества.

Биосферный. Биосфера - совокупность всех биогеоценозов, система, охватывающая все явления жизни на нашей планете. На этом уровне происходит круговорот веществ и превращение энергии, связанные с жизнедеятельностью всех живых организмов.

Уровни организации живой материи: молекулярный, органоидный, компортментный, клеточный, тканевый, органный, организменный.

 

 

7) Экологические факторы.

По своему характеру они подразделены на две крупные группы: абиотические и биотические. Если мы будем подразделять факторы по причинам их возникновения, то они могут быть подразделены на природные (естественные) и антропогенные. Антропогенные факторы могут также быть абиотическими и биотическими.

Абиотические факторы (или физико-химические факторы) – температура, свет, рН среды, соленость, радиоактивное излучение, давление, влажность воздуха, ветер, течения. Это все свойства неживой природы, которые прямо или косвенно влияют на живые организмы.

Биотические факторы – это формы воздействия живых существ друг на друга. Окружающий органический мир – составная часть среды каждого живого существа. Взаимные связи организмов – основа существования популяций и биоценозов.

Антропогенные факторы – это формы действия человека, которые приводят к изменению природы как среды обитания других видов или непосредственно сказываются на их жизни.

Действие экологических факторов может приводить:

– к устранению видов с биотопов (смена биотопа, территории, сдвиг ареала популяции; пример: миграции птиц);

– к изменению плодовитости (плотности популяций, репродукционные пики) и смертности (смерть при быстрых и резких изменениях условий окружающей среды);

– к фенотипической изменчивости и адаптации: модификационная изменчивость – адаптивные модификации, зимняя и летняя спячка, фотопериодические реакции и т.п.

Лимитирующие факторы. Законы Шелфорда и Либиха

Реакция организма на воздействие фактора обусловлена дозировкой этого фактора. Очень часто фактор среды, особенно абиотический, переносится организмом лишь в определенных пределах. Диапазон действия экологического фактора ограничен соответствующими крайними пороговыми значениями (точками минимума и максимума) данного фактора, при котором возможно существование организма. Максимально и минимально переносимые значения фактора – это критические точки, за пределами которых наступает смерть. Пределы выносливости между критическими точками называют экологической валентностью или толерантностью живых существ по отношению к конкретному фактору среды. Распределение плотности популяции подчиняется нормальному распределению. Плотность популяции тем выше, чем ближе значение фактора к среднему значению, которое называется экологическим оптимумом вида по данному параметру. Такой закон распределения плотности популяции, а следовательно, и жизненной активности получил название общего закона биологической стойкости.

Диапазон благоприятного воздействия фактора на организмы данного вида называется зоной оптимума (или зоной комфорта). Точки оптимума, минимума и максимума составляют три кардинальные точки, определяющие возможность реакции организма на данный фактор. Чем сильнее отклонение от оптимума, тем больше выражено угнетающее действие данного фактора на организм. Этот диапазон величины фактора называется зоной пессимума (или зоной угнетения). Рассмотренные закономерности воздействия фактора на организм известно, как правило оптимума.

Установлены и другие закономерности, характеризующие взаимодействия организма и среды. Одна из них была установлена немецким химиком Ю. Либихом в 1840 году и получила название закона минимума Либиха, согласно которому рост растений ограничивается нехваткой единственного биогенного элемента, концентрация которого лежит в минимуме. Если другие элементы будут содержаться в достаточном количестве, а концентрация этого единственного элемента опустится ниже нормы, растение погибнет. Такие элементы получили название лимитирующих факторов. Итак, существование и выносливость организма определяются самым слабым звеном в комплексе его экологических потребностей. Или относительное действие фактора на организм тем больше, чем больше этот фактор приближается к минимуму по сравнению с прочими. Величина урожая определяется наличием в почве того из элементов питания, потребность в котором удовлетворена меньше всего, т.е. данный элемент находится в минимальном количестве. По мере повышения его содержания урожай будет возрастать, пока в минимуме не окажется другой элемент.

Позднее закон минимума стал трактоваться более широко, и в настоящее время говорят о лимитирующих экологических факторах. Экологический фактор играет роль лимитирующего в том случае, когда он отсутствует или находится ниже критического уровня, или превосходит максимально выносимый предел. Одни и те же факторы могут быть или лимитирующими или нет. Пример со светом: для большинства растений это необходимый фактор как поставщик энергии для фотосинтеза, тогда как для грибов или глубоководных и почвенных животных этот фактор не обязателен. Фосфаты в морской воде – лимитирующий фактор развития планктона. Кислород в почве не лимитирующий фактор, а в воде – лимитирующий.

Следствие из закона Либиха: недостаток или чрезмерное обилие какого-либо лимитирующего фактора, может компенсироваться другим фактором, изменяющим отношение организма к лимитирующему фактору.

Однако ограничивающее значение имеют не только те факторы, которые находятся в минимуме. Впервые представление о лимитирующем влиянии максимального значения фактора наравне с минимумом было высказано в 1913 году американским зоологом В. Шелфордом. Согласно сформулированному закону толерантности Шелфорда существование вида определяется как недостатком, так и избытком любого из факторов, имеющих уровень, близкий к пределу переносимости данным организмом. В связи с этим все факторы, уровень которых приближается к пределу выносливости организма, называются лимитирующими.

Периодичность действия экологических факторов. Действие фактора может быть: 1) регулярно-периодическим, меняющим силу воздействия в связи со временем суток, сезона года или ритмом приливов и отливов в океане; 2) нерегулярным, без четкой периодичности, например катастрофические явления – бури, ливни, смерчи и т.д.; 3) направленным на протяжении известных отрезков времени, например, глобальные похолодания, или зарастание водоемов.

Организмы всегда приспосабливаются ко всему комплексу условий, а не к одному какому-либо фактору. Но в комплексном действии среды значение отдельных факторов неравноценно. Факторы могут быть ведущими (главными) и второстепенными. Ведущие факторы различаются для разных организмов, даже если они и живут в одном месте. Они различаются и для одного организма в разные периоды его жизни. Так, для ранневесенних растений ведущим фактором является свет, а после цветения – влага и достаток питательных веществ.

Первичные периодические факторы (дневная, лунная, сезонная, годовая) – происходит адаптация организмов, укоренившаяся в наследственной основе (генофонде), поскольку эта периодичность существовала до появления жизни на Земле.

Факторы, являющиеся следствием изменений первичных факторов (температура – влажность, температура – соленость, температура – время суток).

Абиотические факторы. Универсальные группы: климатические, эдафические, факторы водной среды. В природе существует общее взаимодействие факторов. Принцип обратной связи: выброс токсических веществ уничтожил лес – изменение микроклимата – изменение экосистемы.

1) Климатические факторы. Зависят от главных факторов: широты и положения континентов. Климатическая зональность привела к формированию биогеографических зон и поясов (зона тундр, зона степей, зона тайги, зона широколиственных лесов, зона пустынь и саванн, зона субтропических лесов, зона тропических лесов). В океане выделяются арктическо-антарктическая, бореальная, субтропическая и тропическо-экваториальная зоны. Есть множество вторичных факторов. Например, зоны муссонного климата, формирующие уникальный животный и растительный мир. Широта наиболее сильно сказывается на температуре. Положение континентов – причина сухости или влажности климата. Внутренние области суше периферийных, что сильно влияет на дифференциацию животных и растений на материках. Ветровой режим (составная часть климатического фактора) играет чрезвычайно важную роль в формировании жизненных форм растений.

Важнейшие климатические факторы: температура, влажность, свет.

Температура. Все живое – в температурном диапазоне – от 00 до 500 С. Это летальные температуры. Исключения. Космический холод. Эвритермные и стенотермные организмы. Холодолюбивые стенотермные и теплолюбивые стенотермные. Абиссальная среда (0˚) – самая постоянная среда. Биогеографическая зональность (арктические, бореальные, субтропические и тропические). Пойкилотермные организмы – холодноводные с непостоянной температурой. Температура тела приближается к температуре среды. Гомойотермные – теплокровные организмы с относительно постоянной внутренней температурой. Эти организмы обладают большими преимуществами в использовании среды.

Влажность. Вода в почве и вода в воздухе – факторы, имеющие огромное значение в жизни органического мира.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.)