|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Качество системы и определяющие ее свойстваПонятие «надежность» широко используется во всех сферах деятельности человека (наука, техника, медицина и т. д.), что и определяет широту его толкования. Однако практическоерешение многих задач, а иногда и выяснение их сути оказывается совершенно невозможным без четкого установления некоторых понятий и соотношений между ними, выделения определенных свойств и их количественного описания. Поэтому изучение надежности целесообразно начать с рассмотрения понятий и характеристик надежности, которые используются в решении задач, возникающих при создании и эксплуатации искусственных технических систем вообще и электроэнергетических в частности. Под системой понимается совокупность взаимосвязанных устройств, которая предназначена для самостоятельного выполнения заданных функций. К примеру, ЭЭС представляет собой совокупность взаимосвязанных ЭС (например, солнечных батарей), электрических сетей, узлов нагрузок, объединенных процессом производства, преобразования, передачи и распределения электроэнергии для снабжения потребителей. Отдельные части, на которые можно подразделить систему, представляющие собой законченные устройства, способные самостоятельно выполнять некоторые локальные функции в системе принято называть элементами (например, генераторы, трансформаторы, ЛЭП и т. д.). Деление системы на элементы — процедура условная и производится на том уровне, на котором удобно ее рассматривать для решения конкретной задачи. Например, можно рассматривать генератор, трансформатор блочных станций как отдельные элементы, но иногда их удобно объединить в один элемент. Условность подразделения системы на элементы состоит еще и в том, что любой элемент, в свою очередь, может рассматриваться как система. Например, воздушная линия электропередачи (ВЛ) состоит из таких элементов, связанных определенным образом, как гирлянды изоляторов, опоры, фундаменты, провода, тросы, заземлители и т. д. В связи с этим, рассматривая многие свойства и характеристики элементов и систем, в тех случаях, где нет необходимости подчеркивать свойства, присущие только системам или только элементам, будем говорить об объектах. В качестве объекта могут рассматриваться система, подсистема или элемент. Объект – это предмет определенного целевого назначения, рассматриваемый в периоды проектирования, производства, эксплуатации, изучения, исследования и испытаний нанадежность. Объектами могут быть системы и их элементы, в частности технические изделия, устройства, аппараты, приборы, их составные части, отдельные детали и т.д. Первичным по отношению к понятию «надежность» является понятие «качество». Качество объекта — совокупность свойств и признаков, определяющих его пригодность удовлетворять определенные потребности в соответствии с его назначением, и выражающая его специфику и отличие от других объектов. Этап применения (эксплуатации) объекта охватывает определенный, как правило, длительный период времени. А под влиянием различных факторов может произойти изменение уровня свойств, определяющих качество объекта и эффективность его функционирования. Т.о., предметом науки о надежности является изучение закономерностей изменения показателей качества объектов во времени и разработка методов, позволяющих с минимальной затратой времени и ресурсов обеспечить необходимую продолжительность и эффективность их работы. Специфическими особенностями вопросов надежности являются: — учет фактора времени. Надежность является как бы «динамикой качества», поскольку исследует временное количественное изменение показателей качества, первоначальный уровень которых был заложен при разработке, обеспечен при изготовлении и реализуется при эксплуатации; — прогностическая ценность результатов. Проблемы надежности связаны, прежде всего, с прогнозированием поведения объекта в будущем, так как простая констатация уровня надежности объекта, уже выработавшего свой ресурс, имеет, вообще говоря, малую ценность. Особенно большое значение имеет прогноз на ранних стадиях жизненного цикла объекта (разработка и изготовление), когда необходимо дать оценку эффективности принятых конструкторских решений и применяемых технологических методов для обеспечения требуемого уровня качества и эффективности применения объекта в предполагаемых условиях эксплуатации, в течение необходимого времени применения. Следует иметь в виду, что изменение показателей качества объекта во времени может быть абсолютным и относительным. Абсолютное изменение качества связано с различными повреждающими процессами, воздействующими на объект при эксплуатации и изменяющими свойства и состояние материалов, из которых изготовлен объект или его составные части; за счет этого происходит прогрессивное снижение показателей качества объекта и его физическое старение (физический износ). Относительное изменение качества объекта связано с появлением новых аналогичных объектов с более совершенными характеристиками, в связи с чем, показатели данного объекта становятся ниже среднего уровня в совокупности объектов аналогичного целевого назначения, хотя в абсолютных значениях они могут не изменяться (моральный износ). Наука о надежности изучает только абсолютное изменение показателей качества объектов, связанное с протеканием различных повреждающих процессов. К определяющим качество свойствам технической системы наиболее часто относят надёжность, экономичность и безопасность, а при определённых требованиях к системе – также живучесть. Итак, в соответствии с ГОСТ 27.002-89 [18] надежность трактуется следующим образом. Надежность – это свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонта, хранения и транспортирования. Как видно из определения, надежность является комплексным свойством, которое в зависимости от назначения объекта и условий его пребывания может включать безотказность, долговечность, ремонтопригодность и сохраняемость или определенное сочетание этих свойств. Общей характеристикой показателей надёжности является то, что они имеют вероятностную природу и характеризуют вероятность наступления определённого события или выполнения заданных требований. Возможны оценки надёжности средним значением контролируемой случайной величины (СВ), дополненным доверительными границами. Показатель надежности – это количественная характеристика одного или нескольких свойств, составляющих надежность объекта.Показателем надежности принято называть признак, по которому оценивается надежность элемента, а характеристикой надежности — количественное значение этого показателя для этого элемента. Нормируемый показатель надежности – это показатель, значение которого регламентировано НТД и (или) конструкторской (проектной) документацией на объект. Отечественный и зарубежный опыт решения задач по оценке надёжности систем электроэнергетики [2, 11, 17] показывает, что показатели надёжности в общем случае образуют три группы. Первая группа – это вероятность какого-либо события, например, отказа. Вторая группа – это интенсивность событий, например, число отказов в единицу времени. Третья группа – это средняя продолжительность события (математическое ожидание), например, средняя продолжительность времени между отказами, средняя продолжительность времени восстановления после отказа. В практике получило применение задание пороговых значений показателей надёжности, выполняющих роль нормативных требований. Нормативные требования принимаются соглашением с соответствующими обоснованиями и зависят от достигнутого в данный момент времени технического прогресса в области используемых технологий и оборудования, уровня организации эксплуатации и других факторов, и с течением времени должны пересматриваться. Другим важным свойством является экономичность, которая характеризуется показателями использования средств, вкладываемых в объект. Такими показателями экономичности могут быть себестоимость оказываемых услуг по передаче единицы энергии, прибыль, рентабельность и другие, а для оценки решений по развитию электрической сети – чистый дисконтированный доход, индекс доходности, внутренняя норма доходности и другие. В последнее время всё большую значимость приобретает свойство безопасности технических систем. Безопасность — это способность системы функционировать, не переходя в критические состояния, угрожающие здоровью и жизни людей, окружающей среде, другим техническим системам, или наносящие другой ущерб в больших масштабах. В проблеме безопасности сложных технических комплексов следует выделить два направления. Первое из них относится к их нормальной повседневной эксплуатации. Неизбежные техногенные воздействия на человека и природную среду, а также отходы производства выдвигают ряд практических задач по охране труда и экологичности используемых технологий. Второе направление связано с технологическими нарушениями и получило название промышленная безопасность. Под промышленной безопасностью технического объекта (системы) понимается его способность обеспечить защиту человека, природной среды и собственности от опасных воздействий, возникающих при авариях и инцидентах на этом объекте. Если при анализе надёжности основное внимание уделяется изменению состояния исследуемого объекта, например, нарушению способности выполнять свои функции из-за произошедшего технологического нарушения, то при изучении промышленной безопасности выявляются причинно-следственные связи возникновения аварий и других нарушений с их последствиями (социальными, экологическими, экономическими). Показателями промышленной безопасности являются риски последствий от аварий и инцидентов, которые показывают меру опасности неблагоприятных последствий от нарушений за определённый период времени и включают в себя частоту событий и последствия от них. Оценки надёжности, экономичности и безопасности дают достаточно полное представление о качестве (эффективности) функционирования технического объекта (системы) в определённых условиях эксплуатации – нормальных условиях. Однако, при эксплуатации электрической сети, хотя и редко, возможны опасные воздействия на элементы сети, не предусмотренные условиями нормальной эксплуатации и приводящие к чрезвычайным ситуациям. В качестве примера можно привести известные случаи массового повреждения ВЛ на обширной территории из-за воздействий гололёдно-ветровых нагрузок на провода и конструкции опор, превосходящих проектные. Высока вероятность террористических актов и случаев вандализма против объектов электроэнергетики, нельзя исключить из рассмотрения военные конфликты и действия. Во всех указанных случаях речь идёт о живучести технического объекта (системы) в «широком» смысле – способности объекта полностью или в ограниченном объёме выполнять свои функции при воздействиях, не предусмотренных условиями нормальной эксплуатации, а при полной или частичной утрате работоспособности – восстанавливать её за допустимое время. В электроэнергетике имеет место понятие живучести объекта в «узком» смысле – свойство объекта противостоять возмущениям, не допуская их каскадного развития с массовым нарушением питания потребителей на длительное время. Показатели живучести имеют вероятностный характер и отражают риск возникновения чрезвычайной ситуации, оценки времени восстановления и другие. Поэтому современные количественные теории надежности и живучести в основном базируются на вероятностных моделях, для которых обязательным условием является устойчивость частот таких массовых событий, как отказ. А количественная мера безопасности, пригодная для практического применения относительно отдельных объектов, пока отсутствует, так как безопасность не имеет устойчивых частот даже для инициируемых событий (ошибки персонала, внешние воздействия и пр.). Отсутствие объективной информации привело к созданию теории нечетких множеств как своеобразного инструмента для формализованного описания и преобразования качественных и субъективных экспертных оценок [13]. В целях инженерных расчетов по оценке надежности отдельного оборудования, станций и подстанций в целом ограничиваются рассмотрением устойчивых процессов, связанных с отказами устройств и схем электрических соединений. Все перечисленные свойства сложных технических комплексов, определяющие качество их функционирования, должны учитываться при принятии решения на управляющие воздействия в задачах управления. Концентрация внимания, например, только на показателях экономичности, не гарантирует соблюдения допустимых уровней социальной и экологической безопасности или выполнения договорных обязательств по надёжности энергоснабжения потребителей. В свою очередь, надёжная электрическая сеть в части выполнения требуемых функций может быть не экономичной и не соответствовать требованиям безопасности. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |