|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Иммунологическая толерантность
Иммунологическая толерантность — явление, противоположное иммунному ответу и иммунологической памяти. Проявляется она отсутствием специфического продуктивного иммунного ответа организма на антиген в связи с неспособностью его распознавания. Иммунологическая толерантность предполагает изначальную ареактивность иммунокомпетентных клеток к определенному антигену. Открытию иммунологической толерантности предшествовали работы Р. Оуэна (1945), который обследовал разнояйцовых телят-близнецов. Ученый установил, что такие животные в эмбриональном периоде обмениваются через плаценту кровяными ростками и после рождения обладают одновременно двумя типами эритроцитов — своими и чужими. Наличие чужеродных эритроцитов не вызывало иммунную реакцию и не приводило к внутрисосудистому гемолизу. Явление было названо эритроцитарной мозаикой. Однако Оуэн не смог дать ему объяснение. Собственно феномен иммунологической толерантности был открыт в 1953 г. независимо чешским ученым М. Гашеком и группой английских исследователей во главе с П. Медаваром. Гашек в опытах на куриных эмбрионах, а Медавар — на новорожденных мышатах показали, что организм становится нечувствительным к антигену при его введении в эмбриональном или раннем постнатальном периоде. Иммунологическую толерантность вызывают антигены, которые получили название толерогены. Ими могут быть практически все вещества, однако наибольшей толерогенностью обладают полисахариды. Иммунологическая толерантность бывает врожденной и приобретенной. Примером врожденной толерантности является отсутствие реакции иммунной системы на свои собственные антигены. Приобретенную толерантность можно создать, вводя в организм вещества, подавляющие иммунитет (иммунодепрессанты), или же путем введения антигена в эмбриональном периоде или в первые дни после рождения индивидуума. Приобретенная толерантность может быть активной и пассивной. Активная толерантность создается путем введения в организм толерогена, который формирует специфическую толерантность. Пассивную толерантность можно вызвать веществами, тормозящими биосинтетическую или пролиферативную активность иммунокомпетентных клеток (антилимфоцитарная сыворотка, цитостатики и пр.). Иммунологическая толерантность отличается специфичностью — она направлена к строго определенным антигенам. По степени распространенности различают поливалентную и расщепленную толерантность. Поливалентная толерантность возникает одновременно на все антигенные детерминанты, входящие в состав конкретного антигена. Для расщепленной, или моновалентной, толерантности характерна избирательная невосприимчивость каких-то отдельных антигенных детерминант. Степень проявления иммунологической толерантности существенно зависит от ряда свойств макроорганизма и толерогена. Так, на проявление толерантности влияет возраст и состояние имму нореактивности организма. Иммунологическую толерантность легче индуцировать в эмбриональном периоде развития и в первые дни после рождения, лучше всего она проявляется у животных со сниженной иммунореактивностью и с определенным генотипом. Наибольшей толерогенностью обладают наименее чужеродные по отношению к организму антигены, имеющие малую молекулярную массу и высокую гомогенность. Легче всего формируется толерантность на тимуснезависимые антигены, например, бактериальные полисахариды. Важное значение в индукции иммунологической толерантности имеют доза антигена и продолжительность его воздействия. Различают высокодозовую и низкодозовую толерантность. Высокодозовую толерантность вызывают введением больших количеств высококонцентрированного антигена. При этом наблюдается прямая зависимость между дозой вещества и производимым им эффектом. Низкодозовая толерантность, наоборот, вызывается очень малым количеством высокогомогенного молекулярного антигена. Соотношение «доза-эффект» в этом случае имеет обратную зависимость. В эксперименте толерантность возникает через несколько дней, а иногда часов после введения толерогена и, как правило, проявляется в течение всего времени, пока он циркулирует в организме. Эффект ослабевает или прекращается с удалением из организма толерогена. Обычно иммунологическая толерантность наблюдается непродолжительный срок — всего несколько дней. Для ее пролонгирования необходимы повторные инъекции препарата. Механизмы толерантности многообразны и до конца не расшифрованы. Известно, что ее основу составляют нормальные процессы регуляции иммунной системы. Выделяют три наиболее вероятные причины развития иммунологической толерантности: 1. Элиминация из организма антигенспецифических клонов лимфоцитов. 2. Блокада биологической активности иммунокомпетентных клеток. 3. Быстрая нейтрализация антигена антителами. Элиминации, или делеции подвергаются, как правило, клоны аутореактивных Т- и В-лимфоцитов на ранних стадиях их онтогенеза. Активация антигенспецифического рецептора (TCR или BCR) незрелого лимфоцита индуцирует в нем апоптоз. Этот феномен, обеспечивающий в организме ареактивность к аутоантигенам, получил название центральной толерантности. Основная роль в блокаде биологической активности иммунокомпетентных клеток принадлежит иммуноцитокинам. Воздействуя на соответствующие рецепторы, они способны вызвать ряд «негативных» эффектов. Например, пролиферацию Т- и В-лимфоцитов активно тормозит β-ТФР. Дифференцировку ТО-хелпера в Т1 можно заблокировать при помощи ИЛ-4, -13, а в Т2-хелпер — γ-ИФН. Биологическая активность макрофагов ингибируется продуктами Т2-хелперов(ИЛ-4, -10, -13, β-ТФР и др.). Биосинтез в В-лимфоците и его превращение в плазмоцит подавляется IgG. Быстрая инактивация молекул антигена антителами предотвращает их связывание с рецепторами иммунокомпетентных клеток — элиминируется специфический активирующий фактор. Возможен адаптивный перенос иммунологической толерантности интактному животному путем введения ему иммунокомпетентных клеток, взятых от донора. Толерантность можно также искусственно отменить. Для этого необходимо активировать иммунную систему адъювантами, интерлейкинами или переключить направленность ее реакции иммунизацией модифицированными антигенами. Другой путь — удалить из организма толероген, сделав инъекцию специфических антител или проведя иммуносорбцию. Феномен иммунологической толерантности имеет большое практическое значение. Он используется для решения многих важных проблем медицины, таких как пересадка органов и тканей, подавление аутоиммунных реакций, лечение аллергий и других патологических состояний, связанных с агрессивным поведением иммунной системы. Трансплантационный иммунитет Трансплантология – область биологии и медицины, изучающая проблемы трансплантации, разрабатывающая методы консервирования органов и тканей, создания и применения искусственных органов. Участие иммунной системы в отторжении чужеродной ткани впервые были проведены П. Медаваром в 1945 г. Эти первые наблюдения явились отправной точкой для формирования экспериментально- практического направления исследований - трансплантационной иммунологии. Основные закономерности отторжения чужеродной ткани были выявлены при трансплантации кожных лоскутов между инбредными линиями мышей. При первичной пересадке аллотрансплантата в перве два дня устанавливается общее кровообращение между трансплантатом и реципиентом, края пересаженной кожи срастаются с кожей хозяина. Внешне в течение 4 – 5 дней трансплантат кажется прижившимся. Однако именно в этот внешне благополучный период формируются эффекторные механизмы отторжения. К 6 –7 дню наблюдается отечность трансплантата, прекращается его кровоснабжение, развиваются геморрагии. В зоне локализации трансплантата скапливаются клетки воспалительной реакции, среди которых доминируют лимфоциты. Начинается процесс деструкции трансплантата. К 10 – 11 дню трансплантат погибает, а его пересадка на исходного донора не приводит к восстановлению жизнеспособности. При повторной пересадке трансплантата от того же донора реакция отторжения развивается приблизительно в два раза быстрее – за 6 – 8 дней. Основными провоцирующими отторжение факторами являются молекулы (антигены) МНС. Однако при условии полной идентичности по МНС между донором трансплантата и реципиентом, но различиях по другим антигенам (так называемым минорным антигенам гистосовместимости) реакция все – таки развивается, хотя носит хронический характер. Кроме того, в отторжении участвуют Т – клетки, и основными эффекторами являются цитотоксические СD8 Т – клетки и CD 4 Т- клетки воспаления. Последние привлекают в зону отторжения трансплантата клетки воспаления и в первую очередь макрофаги. Распознавание трансплантационных антигенов происходит либо непосредственно на клетках трансплантата, либо в ближайшей (региональной) лимфоидной ткани, куда поступает отрывающийся от клеточной поверхности антиген. Особое место в отторжении трансплантата играют антитела, которые по тем или иным причинам предсуществуют в организме реципиента. Такие антитела, взаимодействуя с антигенами эндотелия сосудов, пронизывающих трансплантат, инициируют систему комплемента и каскад реакций, приводящих к закупорке сосудов. Практический успех трансплантации зависит от правильного подбора пар донор – реципиент по антигенам гистосовместимости, эффективного применения иммуносупрессорных препаратов, успешной профессиональной работы хирурга. Серодиагностика – распознавание этиологической сущности заболеваний (бактериальных, грибковых, вирусных и паразитарных преимущественно) посредством выявления антител в сыворотке крови (отсюда и происходит термин «серодиагностика»). На практике чаще всего используются реакция связывания комплемента (РСК), реакция агглютинации (РА), реакция гемагглютинации (РГА), реакции преципитации (РП) и бактериолиза. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |