АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Концепция витрин данных

Читайте также:
  1. IBM – концепция маркетинга.
  2. IV. Диалектико-материалистическая концепция сознания
  3. V. Биоэнергетическая концепция влечений
  4. V. Экономико-правовая концепция Трудового кодекса о регулировании труда женщин
  5. Y.4.1. Концепция «Стадий экономического роста»
  6. Y.4.2. Концепция «индустриального общества»
  7. Y.4.3. Концепция «постиндустриального
  8. Y.4.5. концепция
  9. Абстрактные структуры данных
  10. Автоматизированная система обработки данных правовой статистики
  11. Авторское право - правовое положение авторов и созданных их творческим трудом произведений литературы, науки и искусства.
  12. Алгоритм шифрования данных IDEA

Концепция витрин данных была предложена Forrester Research ещё в 1991 году. По мысли авторов, витрины данных — множество тематических баз данных (БД), содержащих информацию, относящуюся к отдельным аспектам деятельности организации.

Концепция имеет ряд несомненных достоинств:

· Аналитики видят и работают только с теми данными, которые им реально нужны.

· Целевая БД максимально приближена к конечному пользователю.

· Витрины данных обычно содержат тематические подмножества заранее агрегированных данных, их проще проектировать и настраивать.

· Для реализации витрин данных не требуется высокомощная вычислительная техника.

Но концепция витрин данных имеет и очень серьёзные пробелы. По существу, здесь предполагается реализация территориально распределённой информационной системы с мало контролируемой избыточностью, но не предлагается способов, как обеспечить целостность и непротиворечивость хранимых в ней данных.

Смешанная концепция витрин данных и хранилищ данных[

Идея соединить две концепции — хранилищ данных и витрин данных, по видимому, принадлежит М. Демаресту (M. Demarest), который в 1994 году предложил объединить две концепции и использовать хранилище данных в качестве единого интегрированного источника данных для витрин данных.

И сегодня именно такое многоуровневое решение:

· первый уровень — общекорпоративная БД на основе реляционной СУБД с нормализованной или слабо денормализованной схемой (детализированные данные);

· второй уровень — БД уровня подразделения (или конечного пользователя), реализуемые на основе многомерной СУБД (агрегированные данные);

· третий уровень — рабочие места конечных пользователей, на которых непосредственно установлен аналитический инструментарий;

постепенно становится стандартом де-факто, позволяя наиболее полно реализовать и использовать достоинства каждого из подходов:

· компактное хранение детализированных данных и поддержка очень больших БД, обеспечиваемые реляционными СУБД;

· простота настройки и хорошие времена отклика, при работе с агрегированными данными, обеспечиваемые многомерными СУБД.

Реляционная форма представления данных, используемая в центральной общекорпоративной БД, обеспечивает наиболее компактный способ хранения данных. Современные реляционные СУБД уже умеют работать с БД имеющими размер порядка нескольких терабайт. Хотя такая центральная система обычно не сможет обеспечить оперативного режима обработки аналитических запросов, при использовании новых способов индексации и хранения данных, а также частичнойденормализации таблиц, время обработки заранее регламентированных запросов (а в качестве таких, можно рассматривать и регламентированные процедуры выгрузки данных в многомерные БД) оказывается вполне приемлемым.

В свою очередь, использование многомерных СУБД в узлах нижнего уровня обеспечивает минимальные времена обработки и ответа на нерегламентированные запросы пользователя. Кроме того, в некоторых многомерных СУБД имеется возможность хранить данные как на постоянной основе (непосредственно в многомерной БД), так и динамически (на время сеанса) загрузить данные из реляционных БД (на основе регламентированных запросов).

Таким образом, имеется возможность хранить на постоянной основе только те данные, которые наиболее часто запрашиваются в данном узле. Для всех остальных хранятся только описания их структуры и программы их выгрузки из центральной БД. И хотя при первичном обращении к таким виртуальным данным время отклика может оказаться достаточно продолжительным, такое решение обеспечивает высокую гибкость и требует менее дорогих аппаратных средств

OLTP

OLTP (Online Transaction Processing), транзакционная система — обработка транзакций в реальном времени. Способ организации БД, при котором система работает с небольшими по размерам транзакциями, но идущими большим потоком, и при этом клиенту требуется от системы минимальное время отклика.

Термин OLTP применяют также к системам (приложениям). OLTP-системы предназначены для ввода, структурированного хранения и обработки информации (операций, документов) в режиме реального времени.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)