|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
КОСМИЧЕСКИЕ ЦИВИЛИЗАЦИИ
(a) Формулировка проблемы
Каким образом мы пытались найти направление, по которому пойдет наша цивилизация? – Рассматривая ее прошлое и настоящее. Почему, изучая технологическую эволюцию, мы все время обращались к эволюции биологической? – Потому что лишь на примере биоэволюции мы можем наблюдать, как совершенствуется регулирование и гомеостаз очень сложных систем; этот процесс свободен от человеческого вмешательства, которое могло бы исказить результаты наблюдений и выводы, сделанные из них. Мы поступаем как человек, который, желая знать свое будущее и свои возможности, изучает себя и все, что его окружает. Но ведь существует, по крайней мере в принципе, и другой путь. Молодой человек может прочитать свою судьбу в судьбах других людей. Наблюдая их, он может узнать, какие дороги открыты перед ним и в чем состоят ограничения в выборе этих дорог. Молодой Робинзон на безлюдном острове, подметив, что творения природы – моллюски, рыбы и растения – смертны, быть может, уяснил бы и ограниченность собственного существования во времени. Но о скрытых в ней возможностях гораздо больше рассказали бы ему огни и дымы далеких кораблей или пролетающие над островом самолеты; он пришел бы к выводу о существовании цивилизации, созданной подобными ему существами. Человечество – это своего рода Робинзон, высаженный на уединенной планете. Решить проблему существования «иных» ему, по всей вероятности, еще труднее, чем Робинзону. Однако дело того стоит. Если бы мы обнаружили проявления космической деятельности других цивилизаций, то заодно узнали бы и кое-что о своем будущем. И тогда нам не пришлось бы более опираться лишь на домыслы, основанные на скудном земном опыте. Космические факты дали бы нам огромное поле для сравнения. Кроме того, мы установили бы и наше собственное место на «кривой распределения цивилизаций», узнали бы, к каким – обычным или исключительным – явлениям относится наша цивилизация, соответствуем ли мы «нормам развития», «принятым» во Вселенной, или представляем собой отклонение, уродство. Предполагается, что материал по биогенезу в пределах солнечной системы мы получим через несколько лет, самое большее через десятки лет. Однако в нашей планетной системе почти наверняка нет высокоразвитых цивилизаций. Попытки сигнализировать о нашем существовании обитателям Марса или Венеры (эти идеи были весьма популярны в конце XIX века) сейчас не предпринимаются, и совсем не потому, что это технически невозможно. Все дело в том, что это был бы напрасный труд. Либо там вообще нет цивилизаций, либо на этих планетах существуют такие формы жизни, которые не создали технологий. В противном случае они бы давно нас обнаружили благодаря интенсивному излучению в области коротких радиоволн. Радиоизлучение Земли в диапазоне метровых волн (то есть тех волн, которые свободно проходят через атмосферу) достигает уже уровня общего радиоизлучения Солнца в этом же диапазоне – и все это из-за телевизионных станций... Поэтому каждая цивилизация в пределах солнечной системы, достигшая хотя бы уровня земной, заметила бы наше присутствие и, без сомнения, вступила бы с нами в контакт с помощью световой сигнализации, радио или же непосредственно. Но таких цивилизаций нет. Проблема эта, хотя и захватывающая, нас не занимает, поскольку мы интересуемся не цивилизациями вообще, а цивилизациями, которые превзошли в своем развитии уровень земной. Только такие цивилизации, только их наличие помогло бы сделать выводы о нашем будущем. Результаты фактических наблюдений сделали бы совершенно ненужной большую часть нашего анализа (по сути дела умозрительного). Робинзон, получив возможность общаться с другими разумными существами или хотя бы наблюдать издали их деятельность, более не был бы обречен на неуверенность догадок. Разумеется, в подобной ситуации есть и кое-что неприятное. Слишком ясные, слишком однозначные ответы на наши вопросы показали бы нам, что мы – невольники детерминизма, – заложенного в законах нашего развития, а не существа, приговоренные ко все большей свободе, безграничной свободе выбора; такая свобода была бы тем более иллюзорной, чем сильнее сходились бы к одной точке пути развития цивилизаций в различных галактиках. Итак, начало нового этапа наших рассуждений, этапа, выводящего нас в просторы Космоса, столь же манит нас, сколь и тревожит. От «низших существ», животных, мы отличаемся не только цивилизацией, но и сознанием ограничений, наложенных на наше существование. Главное из них то, что мы смертны. Кто знает, каким сомнительным богатством располагают обогнавшие нас? Как бы там ни было, подчеркнем еще раз, что нас интересуют не фантазии, а факты и их истолкование, не противоречащее методам науки. Поэтому мы вообще не будем принимать во внимание те бесчисленные «варианты» будущего, которые напророчены Земле или другим космическим объектам писателями, развивающими столь пышный в наше время жанр научной фантастики. Известно, что литература, даже и научно-фантастическая, не имеет обыкновения оперировать методами точных наук, применять каноны математики и научной методологии или, скажем, теории вероятностей. Говоря это, я не стремлюсь осуждать фантастику за ее прегрешения против научной истины, а просто стараюсь подчеркнуть, сколь важно для меня избегнуть в рассматриваемой нами проблеме произвола в рассуждениях. Будем поэтому опираться на данные астрофизических наблюдений и использовать метод, обязательный для ученого. Этот метод имеет мало общего с методом художника совсем не потому, что последний более склонен к рискованным шагам. Все дело в том, что ученый – в идеале – тщательно изолирует рассматриваемое им явление от мира собственных переживаний, очищает объективные факты и выводы от субъективных эмоций. Идеал этот чужд художнику. Можно сказать, что человек тем в большей степени является ученым, чем лучше умеет подавлять в себе человеческие порывы, как бы заставляя говорить своими устами саму природу. Художник же тем более является художником, чем сильнее навязывает нам самого себя, все величие и ничтожность своего неповторимого существования. Мы никогда не встречаем столь чистых случаев; это свидетельствует о том, что реализовать их полностью невозможно: ведь в каждом ученом есть что-то от художника, а в каждом художнике – кое-что от ученого. Но мы рассуждаем только об общей тенденции, а не о недостижимом пределе.
(b) Формулировка метода
В последнее время появилось много научных работ, посвященных рассматриваемой нами проблеме, однако, рассеянные по журналам, они, как правило, труднодоступны. Этот пробел заполнила книга советского астрофизика И. С. Шкловского «Вселенная, жизнь, разум»[22]. Насколько я знаю, это первая монография, посвященная проблеме космических цивилизаций; в ней рассматриваются вопросы их существования и развития, возможности взаимных контактов, распространенность цивилизаций в нашей Галактике и других звездных системах, причем рассмотрение этой проблемы составляет главную тему книги, а не носит характер заметок на полях космологических и космогонических теорий (как бывало до сих пор). И. С. Шкловский в противоположность другим исследователям рассматривает проблему в весьма широком плане, посвящая вопросу о биогенезе в солнечной системе лишь одну из глав своей работы. Книга эта тем более ценна, что в ней приводятся взгляды и результаты вычислений ряда астрономов (в основном радиоастрономов), которые применили вероятностные методы для изучения проблемы «плотности» цивилизаций в Космосе и попытались согласовать результаты расчетов с современными наблюдениями и теорией. Исходя из характера интересующих нас вопросов, мы используем лишь ту часть приведенного И. С. Шкловским богатого материала, которая связана с проблемами «космической техноэволюции». Мы рассмотрим также и некоторые основные положения, на которых английские, американские и немецкие авторы строят свои теории, хотя представляется, что эти положения в значительной степени произвольны и гипотетичны. Современная астрономия не в состоянии дать ни прямых доказательств существования планетных систем около звезд (например, посредством оптических наблюдений), ни косвенных подтверждений этому, за исключением, быть может, случаев, когда это ближайшие к нам звезды, а планеты представляют собой тела с массой, значительно превосходящей массу Юпитера; только при этих условиях по возмущениям собственного движения звезды можно установить наличие такого тела, удаленного от нас на расстояние в несколько десятков световых лет.[23]То, что в подобной ситуации вообще можно говорить о каких-то претендующих на точность результатах поиска «других цивилизаций», может вызвать по меньшей мере удивление. Но трудно не согласиться хотя бы с исходной частью рассуждений, лежащих в основе работ подобного рода. Есть две возможности обнаружить космическое существование «других» цивилизаций. Во-первых, принять посланные ими сигналы (радиосигналы, световые сигналы или же «материальные» сигналы в виде «чужих» ракетных зондов и т.п.). Во-вторых, обнаружить «чудо». Этим термином И. С. Шкловский обозначил явления, которые не могут произойти «сами по себе», то есть явления, необъяснимые с точки зрения астрономии. Поясню это на примере. С позиций геологии невозможно допустить, чтобы естественным путем возникла, скажем, автострада, которая пересекает ландшафт планеты. Подобно геологу, который, обнаружив автостраду, сделал бы вывод о присутствии разумных существ, ее построивших, астроном, открыв отклонения от того, что диктует ему его наука, отклонения, которые никак нельзя объяснить «естественным» способом, должен будет сделать вывод, что в поле зрения его прибора находится результат целенаправленной деятельности. Таким образом, «чудеса» были бы не умышленными сигналами, цель которых – оповестить возможных наблюдателей в Космосе о наличии жизни, а лишь побочным продуктом деятельности высокоразвитой цивилизации, сопутствующим ей, подобно тому как зарево на ночном небосклоне сопутствует большому городу. Простой расчет показывает, что такие явления могут наблюдаться с расстояний в сотни (если не десятки) световых лет при условии, что они соответствуют энергетическим затратам, равным мощностям звезд. Одним словом, астрономически наблюдаемы могут быть лишь проявления «звездной инженерии». Возникновение подобной деятельности в той или иной форме на определенном этапе развития считается вполне вероятным всеми авторами (Дайсон, Саган, фон Хорнер, Брэйсуэлл, а также и сам Шкловский). Если принять, что потребление энергии будет возрастать ежегодно на треть процента (оценка, скромная по сравнению с современным приростом), то общая выработка энергии через 2500 лет будет в 10 миллиардов раз превышать современный уровень и в 4500 году составит одну десятитысячную долю энергетического выхода Солнца. Даже превращение водорода земных океанов в энергию обеспечило бы такие расходы энергии лишь на два тысячелетия. Астрофизики усматривают различные возможности разрешения этой проблемы. Дайсон предлагает использовать всю энергию Солнца, построив «сферу Дайсона», то есть тонкостенную шаровую поверхность с радиусом, равным радиусу земной орбиты. Материал для сооружения такой сферы могут дать большие планеты, в основном Юпитер. Внутренняя поверхность сферы, обращенная к Солнцу, собирала бы все солнечное излучение (4*1033эрг/сек). Шкловский видит другую возможность использования солнечной энергии. Она состоит в воздействии на ход ядерных реакций в недрах Солнца с целью получения такого выхода энергии, который удовлетворил бы требования астроинженеров будущего. Мы, разумеется, не знаем, будет ли потребление энергии возрастать в течение ближайших тысячелетий так же, как и теперь, но уже сейчас можно указать на потенциальных потребителей такого огромного количества энергии. Так, например, единственным теоретически мыслимым на сегодня устройством для межзвездных и межгалактических перелетов (время которых будет соизмеримо с длительностью человеческой жизни) является фотонная ракета. Фотонная ракета требует затрат энергии как раз такого порядка. Разумеется, этот пример – только иллюстрация. Солнце является вполне заурядной звездой во всех отношениях, в том числе и по своему возрасту. Поэтому можно полагать, что звезд, подобных Солнцу, но более старых по возрасту и обладающих планетными системами, примерно столько же, сколько и более молодых звезд. Из этого следует, что среди космических цивилизаций более развитых, чем наша, столько же, сколько и отстающих от нас в своем развитии. Рассуждения, в основу которых кладется тезис о типичности нашей цивилизации, до сих пор представляются непоколебимыми: и само положение Солнца в системе Млечного Пути «среднее» (ни на самом краю, ни слишком близко к центру), и Млечный Путь – наша Галактика – типичная спиральная галактика, подобная миллионам других, зарегистрированных в огромном каталоге туманностей. Поэтому есть большие основания считать земную цивилизацию достаточно типичной, рядовой, принадлежащей к категории наиболее часто встречающихся цивилизаций. Брэйсуэлл и фон Хорнер независимо друг от друга провели статистический подсчет «плотности цивилизаций» в Космосе, исходя из предположения, что в нашей Галактике только одна из 150 звезд обладает планетной системой. Поскольку Галактика насчитывает около 150 миллиардов звезд, в ней должно обращаться около миллиарда планетных систем. Скорее всего, это скромное предположение. Пусть на каждой из миллиарда планетных систем когда-нибудь возникает жизнь, эволюция которой на определенном этапе проходит «психозойскую фазу». Расчеты показывают, что если бы длительность этой фазы (продолжительность технологической эры) зависела только от длительности существования материнской звезды (то есть если бы средняя цивилизация могла существовать лишь до тех пор, пока она получает нужную для жизни энергию от своей звезды), то среднее расстояние между двумя цивилизациями составляло бы менее десяти световых лет. Этот математически обоснованный вывод не находит подтверждения в фактах. При такой плотности цивилизаций мы должны были бы уже теперь принимать сигналы с ближайших звезд даже без помощи специальной аппаратуры, вроде той, какая использовалась в 1960 г. группой радиоастрономов под руководством Дрейка в обсерватории Грин Бэнк (США). Эта приемная аппаратура обладала чувствительностью, близкой к максимальной, и могла принимать сигналы, которые посылал бы земной передатчик с расстояния в десять световых лет. Разумеется, американский радиотелескоп мог принять сигналы и с расстояний даже в сто раз больших, если бы только в направлении, в котором «смотрела» его 27-метровая антенна, был послан сигнал соответствующей мощности. Поэтому из «молчания» приемных приборов следует не только очевидность «цивилизационного вакуума» вблизи звезд ε Эридана и τ Кита, но и отсутствие идущих в нашу сторону более мощных сигналов из глубин Космоса за этими звездами. Группа ученых, руководимая Дрейком, сделала первую в истории астрономии попытку «подслушать звездные цивилизации», осуществив идею, предложенную другими американскими физиками, Коккони и Моррисоном. Ученые изготовили аппаратуру, предназначенную специально для приема «искусственных» сигналов, которая была способна отделять эти сигналы от «галактического шума» (радиоволны генерируются и всем Млечным Путем, то есть его звездами и межзвездной материей). Эксперимент был узконаправленным; отыскивали какую-либо регулярность в принимаемых радиоволнах – регулярность, которая означала бы, что пучок посланных волн модулирован, то есть что он служит носителем информации, посланной разумными существами. Этот опыт был первым, но наверняка не последним, хотя надежды астрофизиков не оправдались и их приемники день за днем, неделя за неделей регистрировали лишь равномерный созданный неживой материей космический шум.
(c) Статистика космических цивилизаций
Мы уже говорили о гипотезе, которая приписывает звездным цивилизациям время жизни, сравнимое с временем жизни материнских звезд, о гипотезе, практически означающей, что единожды возникшая цивилизация существует на протяжении миллиардов лет. Эта гипотеза неизбежно приводит к выводу о такой плотности цивилизаций в Космосе, когда два обитаемых мира отделены друг от друга расстоянием едва лишь в несколько световых лет. Такой вывод противоречит всей совокупности наблюдений: и отрицательному результату «подслушивания» Вселенной, и отсутствию сигналов другого вида (например, отсутствию «чужих» ракетных зондов), и, наконец, полному отсутствию «чудес», то есть явлений, вызванных астроинженерной деятельностью. Такое положение дел склонило Брэйсуэлла, фон Хорнера, а также и Шкловского принять гипотезу о кратковременности цивилизаций по сравнению с жизнью звезд. Но если средняя продолжительность жизни цивилизаций составляет «только» сто миллионов лет, то (в результате неизбежного «разрастания» за период их жизни) статистически наиболее правдоподобно, что расстояние между двумя ближайшими цивилизациями составляет около 50 световых лет. Это также весьма сомнительно. Поэтому вышеупомянутые авторы склоняются к предположению, что средняя длительность жизни цивилизаций составляет всего несколько, быть может, до десятка с лишним тысяч лет. Тогда два высокоразвитых мира будут разделены расстоянием порядка тысячи световых лет, а это уже делает понятной неудачу с «подслушиванием» и наблюдением. Далее, чем большему числу планет в Галактике мы припишем возможность биогенеза, венчаемого «психозоем», тем меньшую среднюю продолжительность жизни мы должны установить для цивилизации, чтобы не войти в противоречие с наблюдениями. В настоящее время считают, что из 150 миллиардов звезд Галактики один миллиард обладает планетами, пригодными для возникновения жизни. Однако уменьшение этой величины даже в десять раз не изменило бы существенно результата вероятностных вычислений. Положение создается весьма неясное: ведь если эволюция жизни в ее предцивилизационной форме длится миллиарды лет, то трудно понять, почему «психозой» всего через несколько десятков веков после своего великолепного старта должен погибнуть. Если уяснить, что даже миллион лет составляет лишь малую долю от того времени, в течение которого могла бы развиваться цивилизация (поскольку материнская звезда может непрерывно поставлять лучистую энергию в течение миллиардов лет), то мы поймем всю таинственность этого явления, разгадка которого пока что глумится над нашей любознательностью. В свете таких рассуждений разумная жизнь во Вселенной представляется редким феноменом. Поясним: не жизнь вообще, поскольку нас интересуют не мириады цивилизаций, которые возникли и погибли за все время существования Галактики (около 15 миллиардов лет), а только те, которые сосуществуют с нами. Принимая за истину (хотя и трудно объяснимую) представление об эфемерности «психозоя», фон Хорнер рассматривает четыре возможных причины: 1) полное уничтожение жизни на планете; 2) уничтожение только высокоразвитых существ; 3) психическое или физическое вырождение; 4) потеря интереса к науке и технике. Приписав каждой из этих причин произвольно выбранную вероятность, фон Хорнер получил для средней длительности цивилизаций величину в 6500 лет, а для среднего расстояния между ними величину в тысячу световых лет. Наконец, из его вычислений вытекает, что наиболее вероятный возраст цивилизации, с которой мы установим первый контакт, равен 12000 лет. Вероятность первого контакта с цивилизацией в той же фазе развития, что и земная составит всего 0,5% – пренебрежимо малую величину. Наряду со всем остальным фон Хорнер учитывает также и многократное возникновение и исчезновение цивилизаций на одной и той же планете. Неудача американского эксперимента становится в свете этих выводов понятной. Под знаком вопроса стоит и проблема обмена информацией с другими цивилизациями, так как, даже если бы удалось наладить связь, ответа на заданный вопрос пришлось бы ждать 2000 лет... Фон Хорнер считает, что эффект «положительной обратной связи» может возникнуть, если в силу статистического распределения жизни во Вселенной где-нибудь образуется местное скопление космических цивилизаций. Если в таком местном «сгущении психозоя» время для получения ответа на вопрос мало по сравнению с длительностью существования цивилизаций, то между цивилизациями может произойти эффективный обмен информацией, что в свою очередь может продлить их существование (благодаря обмену научными сведениями и т.п.). Шкловский обращает внимание на сходство такого процесса с лавинообразным размножением организмов в благоприятной среде. Такой процесс, начнись он в каком-то месте Галактики, мог бы втягивать в орбиту своего действия все большее число галактических цивилизаций, что привело бы к созданию некоего «сверхорганизма». Удивительнее всего и, по правде говоря, совершенно непонятно, почему такая возможность до сего времени не реализовалась. Примем на время гипотезу катастроф фон Хорнера за космический закон. Статистический характер этой закономерности делает весьма вероятным существование – пусть небольшой – горстки исключительно долговечных цивилизаций. Предположить, что ни одна цивилизация не доживет до миллиона лет, означало бы превратить законы статистики в какой-то таинственный, фатальный детерминизм, в дьявольскую неуклонность быстрого уничтожения. Отбросим это предположение. Тогда получится, что, если таких долговечных, существующих миллионы лет цивилизаций и немного, некоторые из них должны были бы давно овладеть обширными звездными пространствами, простирающимися на далекие расстояния от их родных планет. Другими словами, горсточка этих цивилизаций стала бы определяющим фактором галактического развития, и тогда постулат о «положительной обратной связи» был бы реальностью. На самом деле этот эффект должен был бы действовать уже тысячи веков. Почему же отсутствуют сигналы таких цивилизаций, проявления их гигантской астроинженерной деятельности, сделанные ими бесчисленные информационные зонды, бороздящие космическое пространство, саморазмножающиеся автоматы, проникающие в самые отдаленные уголки нашей звездной системы? Одним словом, почему мы не наблюдаем «чудес»?
(d) Космический катастрофизм
Млечный Путь – типичная спиральная галактика; Солнце – типичная звезда; типична, вероятно, как планета и Земля. Однако в какой степени можно экстраполировать на Космос происходящие на Земле цивилизационные явления? Имеются ли основания и в самом деле утверждать, что, когда мы смотрим на небо, мы видим бездну, которую наполняют миры, либо уже покрытые пеплом покончившего с собой разума, либо идущие по прямому пути к такому финалу? Фон Хорнер придерживается подобной точки зрения, приписывая гипотезе «самоликвидации психозоя» 65 процентов из ста возможных! Если учесть, что галактик, подобных нашей, существуют миллиарды, если, далее, принять в силу сходства их атомного строительного материала и динамических законов, ими управляющих, что планетная и «психозойская» эволюции протекают в них аналогично, то мы придем к картине триллионов цивилизаций, которые вступают на путь развития с тем, чтобы – спустя одно лишь мгновенье в астрономической шкале – погибнуть. Эта картина статистической преисподней неприемлема – и не потому, что выглядит слишком страшной, а просто из-за ее чрезмерной наивности. Хорнеровскую гипотезу Космоса как машины, серийно производящей атомные бойни, мы должны критиковать не за ее катастрофизм и отклонить совсем не по соображениям морального порядка, так как эмоциональные реакции не должны участвовать в анализе, претендующем на точность. Дело в том, что эта гипотеза основана на совершенно неправдоподобной предпосылке, будто пути развития на различных планетах совпадают. Мы вовсе не считаем, что Земля с ее кровавой историей войн и человек со всеми отрицательными свойствами его натуры являются малопочетным исключением для Космоса, а звездные просторы населены существами, которые уже на самой заре своей истории были совершеннее нас. Однако экстраполяция с уже исследованных процессов на еще не исследованные (столь ценная в космологии, астрономии и физике) может легко превратить опыт метагалактической социологии в его собственное reductio ad absurdum[24]. Можно предполагать, что на эту проблему прольет свет возможное в ближайшем будущем моделирование социоэволюционных процессов на вычислительных машинах. Поскольку овладеть силами Природы легче, чем осуществить глобальное регулирование общества, вполне возможно, что опережение социоэволюции техноэволюцией является типичной динамической чертой таких процессов. Трудно, однако, предположить, что отставание в регулировании социальных процессов от регулирования сил природы всегда одно и то же в космическом масштабе и представляет собой некоторую фундаментальную «константу» развития всех возможных цивилизаций. Но ведь величина этого запаздывания, входящая как существенный параметр в историю социальных явлений, формируя начавшийся процесс объединения человечества в масштабах всей планеты, привела одновременно к созданию двух великих антагонистических коалиций. Не говоря уже о том, что и такой тип развития вовсе не ведет с неизбежностью к тотальному уничтожению, можно, по-видимому, считать, что в большей части «миров» (напоминаем, что речь идет о моделях) распределение сил может столь отличаться от земного, что шансы взаимного уничтожения не возникнут. Столкновения могут носить характер разрешения кризиса, и после временного регресса, явившегося следствием войн, наступит объединение всех сил общества «планеты». Что тогда? Тогда – отвечает сторонник гипотезы фон Хорнера – вступят в действие другие факторы, сокращающие время технологической эры. Появятся, например, тенденции к «вырождению» – ведь невозможно отрицать, что цели, к которым сейчас стремится значительная часть человечества, носят характер потребительского гедонизма. О возможностях «гедонистического торможения» развития мы еще будем говорить, так же как и о весьма вероятных периодических снижениях «технологического ускорения». Но всем этим причинам фон Хорнер приписывает только 35 процентов «веса». А мы представили определенную возможность теоретического, математически-модельного опровержения гипотезы фон Хорнера об автоликвидации как законе существования большей части космических цивилизаций. Впрочем, если бы фон Хорнер был ближе к истине, чем мы думаем, то, как уже говорилось, статистический тип установленных им «законов» должен, именно в силу своего вероятностного характера, допускать исключения. Пусть для 990 миллионов планет из галактического миллиарда действительно характерна краткость технологической эры. Пусть из оставшихся десяти миллионов только сто тысяч или хотя бы одна тысяча ускользнет от «закона эфемерности цивилизаций». Тогда на этой тысяче планет цивилизации будут развиваться сотни миллионов лет. Мы будем иметь перед собой особый аналог земной биоэволюции. Ведь как, собственно, проявляется ее деятельность? Количество видов животных, которые погибли в ходе эволюции, несравненно больше количества выживших видов. А каждый вид, который сохранился, дал начало огромному количеству новых. И мы имеем право постулировать существование точно такой же адаптивной радиации, но уже не биологического, а космически-цивилизационного порядка. Наша гипотеза вовсе не предполагает «идиллию» развития. Напротив, пусть эти миллиардолетние цивилизации в процессе своей звездной экспансии сталкиваются и борются друг с другом. Но тогда мы должны были бы наблюдать их войны – в виде гаснущих созвездий, колоссальных взрывов, вызванных пучками уничтожающего излучения, тех или иных «чудес» астроинженерии, мирной или разрушительной – безразлично. И вот мы снова возвращаемся к поставленному с самого начала вопросу: почему мы не наблюдаем «чудес»? Заметьте, что в последнем абзаце мы были готовы принять даже более «катастрофический» путь развития цивилизаций, чем тот, который предполагает фон Хорнер. Фон Хорнер утверждает не только и не столько то, что все космические цивилизации кончают самоубийством, сколько то, что они совершают это в фазе развития, близкой к достигнутой на Земле (то есть астрономически ненаблюдаемой). Создается впечатление, что это уже не использование вероятностных методов в исследовании социогенеза, а просто перенесение тревог современного человека (которым является и почтенный астрофизик) на весь Космос. Астрофизика не может дать нам ответа на поставленный вопрос. Попробуем поискать его где-нибудь еще.
(e) Метатеория чудес
В чем, собственно, могли бы заключаться упоминавшиеся до сих пор в весьма общем плане «чудеса» как проявления астроинженерной деятельности? В качестве «возможных чудес» такого рода Шкловский называет искусственно вызванные взрывы Сверхновых звезд или присутствие спектральных линий технеция в спектрах некоторых редких (пекулиарных) звезд. Так как технеций не встречается в естественных условиях (на Земле мы его синтезируем) из-за быстрого распада (в течение нескольких тысяч лет), то из нахождения его спектральных линий следует, что присутствие технеция в излучении звезды может быть вызвано... «подсыпкой» его в горнило, которую, очевидно, производят астроинженеры. Отметим кстати, что количество элемента, необходимое для того, чтобы в излучении звезды проявились его спектральные линии, в астрофизическом масштабе ничтожно – порядка нескольких миллионов тонн. Однако эта гипотеза наряду с гипотезой «искусственных взрывов Сверхновых» была высказана Шкловским в полушутливой форме. Поступал он так по причине весьма серьезной. Одним из наиболее фундаментальных принципов методологии науки является так называемая «бритва Оккама» – тезис, утверждающий, что entia non sunt multiplicanda praeter necessitatem[25], то есть что при построении гипотез в них не следует вводить больше «сущностей», чем это необходимо. Под «сущностями» имеются в виду вводимые в теорию основные понятия, которые не сводятся к другим, более элементарным. Принцип этот соблюдается столь повсеместно, что его даже трудно уловить в отдельном научном исследовании. Новое понятие допускается вводить в теоретическую модель действительности лишь в исключительных случаях – если иначе рушатся бесчисленные положения, составляющие самый фундамент всей нашей науки. Когда было обнаружено, что в некоторых явлениях ядерного распада не выполняется закон сохранения массы (выглядело это так, будто часть массы бесследно «исчезает»), Паули, чтобы спасти этот основной закон, ввел понятие «нейтрино» – частицы первоначально чисто гипотетической, существование которой было обнаружено экспериментально лишь после этого. «Бритва Оккама», или принцип лаконичности мышления, требует от ученого, чтобы он старался объяснять каждое явление возможно более простым способом, без введения «дополнительных сущностей», то есть необязательных гипотез. Следствием применения этого принципа является тенденция к унификации во всех науках; эта тенденция проявляется в сведении разнородных явлений к более общим, в непрестанном стремлении к использованию базисных понятий, вроде тех, которыми оперирует физика. Специальные науки иногда противятся такой редукции. Так, например, долгое время биологи утверждали, что при исследовании процессов жизни необходимы понятия «энтелехии», или «жизненной силы». Такой же «дополнительной гипотезой» является и представление о сверхъестественном акте творения, введение которого должно было избавить нас от всех хлопот, связанных с решением проблем биогенеза или появления сознания. По истечении некоторого времени, однако, обнаруживается, что введение этих понятий нарушало принцип Оккама, и они отбрасываются как ненужные. Астроном, смотрящий в звездное небо, наблюдает там множество явлений, которые он уже в силах объяснить, исходя из определенных теоретических моделей (например, моделей эволюции звезд или их внутреннего строения). Наблюдает он также и множество других фактов, еще не объясненных. Истечение огромных масс межзвездного водорода из области галактического ядра или мощное радиоизлучение некоторых внегалактических туманностей еще не нашли своего теоретического объяснения. Тем не менее ученый отвергает заявление: «Это для нас непонятно, посему это – проявление деятельности разумных существ». Поступать так весьма рискованно, ибо при этом мы закрываем путь всем попыткам «естественного» объяснения явлений. Если во время прогулки по безлюдному морскому берегу мы увидим группы камней, лежащие через правильные интервалы, причем нас поразит симметрия их расположения, то мы будем готовы счесть это результатом какого-то явления, исследование которого может дать плоды, весьма ценные для науки. Нет ли в этом еще не известного проявления гидродинамических сил прилива? Но если мы узнаем, что какой-то человек шел перед нами тем же самым путем и укладывал камни, ибо это ему нравилось, то все наши физические или геологические знания не найдут себе применения. Поэтому поведение некоторых спиральных туманностей, даже наиболее отступающее от «галактической нормы», ученые склонны приписывать действию природных сил, а не вмешательству Разума. Гипотезы о «чудесах» можно множить в большом количестве. Приходилось слышать, например, что космическое излучение – это рассеянный по всей Галактике продукт выхлопа огромных «квантолетов», трассы которых пересекают космические пространства по всем направлениям. Если принять, что с различных отдаленных планет уже миллионы лет стартуют фотонные ракеты, то можно часть радиоизлучения, приходящего к нам из Галактики, признать за следы их излучения, которое за счет эффекта Доплера смещено в радиодиапазон (так как предполагаемые источники этого излучения – ракеты – движутся с околосветовыми скоростями). Звезды, которые со скоростями порядка сотен километров в секунду внезапно «вылетают» из области некоторых скоплений, могут мчаться с такой быстротой вследствие эффекта «пращи», обусловленного естественным процессом взрыва их звездных коллег. Но может быть, взрывы этих «коллег» производятся усилиями астроинженеров? Часть взрывов Сверхновых на самом деле могла бы быть искусственного происхождения... но «бритва Оккама» неуклонно запрещает нам принятие подобных гипотез. Кстати, отметим, что одним из смертных грехов научной фантастики является умножение «сущностей», то есть гипотез, без которых наука легко обходится. Целая уйма научно-фантастических произведений принимает за исходный тезис идею о том, что развитие жизни на Земле (или хотя бы превращение низших млекопитающих в предка человека) наступило благодаря внешнему вмешательству: когда-то, в незапамятные времена, на Землю опустилась ракета инопланетян, которые, сочтя условия для «разведения жизни» под нашим солнцем достаточно хорошими, заложили на ней начала жизни. Может быть, они считали, что совершают доброе дело, может быть, это был эксперимент, может быть, только «ляпсус» одного из звездных пришельцев, который, возвращаясь на ракету, уронил пробирку с зародышами жизни... Такого рода концепции можно плодить без устали. Дело, однако, в том, что все они, с точки зрения оккамовского принципа, запрещены, поскольку биогенез можно объяснить и без привлечения «теории космического визита», хотя (Шкловский упоминает об этом в своей книге) эту возможность в принципе нельзя исключать. Кто знает, быть может, сам человек когда-нибудь станет распространять жизнь на других планетах. Упомянутый уже американский астроном Саган предлагает план превращения Венеры в годную для колонизации планету путем размножения на ней некоторых земных водорослей... Поэтому результат методологического анализа однозначен. Ученые, ищущие проявления «астроинженерной» деятельности в Космосе, может быть, уже давно ее наблюдают, но так квалифицировать эти явления, выделить их из сферы естественных процессов и объяснить их происхождение деятельностью Разума им запрещает наука, которой они служат. Что ж, из этой дилеммы нет выхода? Возможны ли «подлинные чудеса», «чудеса», которые нельзя объяснить нетехнологическим способом? Без сомнения, да. Но, вообще-то говоря, кроме очевидного использования огромных и потому астрономически наблюдаемых мощностей, это должен быть такой способ поведения, который каким-то, пусть даже самым общим образом, был бы похож на наш. Что мы имеем в виду, когда ищем «чудеса»? Обнаружение явлений, в которых наши собственные возможности возведены на высшую ступень. Иначе говоря, прогресс мы понимаем как движение по линии возрастания, а будущее – как эру Больших и Могучих Дел. Чего ждал от земного или внеземного будущего человек каменного века? – Огромных, великолепно обточенных кремней! А что мог ожидать на других планетах житель античного мира? – Наверняка галер с веслами километровой длины! Может быть, здесь и кроется ошибка в наших рассуждениях? Может быть, высокоразвитая цивилизация-это вовсе не огромная энергия, а наилучшее регулирование? Разве открытое столь недавно сходство атомных реакторов и ядерных бомб со звездами равнозначно определению будущего пути? Разве высшая цивилизация – это то же, что и наиболее населенная? А если нет, то ее социостаз не должен быть эквивалентен растущей энергетической прожорливости. Что делал первобытный человек у костра, разожженного его собственными руками? Бросал в него все, что может гореть, кричал и танцевал вокруг пламени, одурев от такого проявления собственного могущества. Не слишком ли мы на него похожи? – Может быть! Несмотря на подобные «контрдоводы», следует ожидать различных путей развития цивилизаций, а среди них и «экспансивных», близких нашей героической концепции вековечного покорения материи и пространства. Поэтому скажем правду: мы ищем не «всевозможные цивилизации», а прежде всего антропоморфные. Мы привносим в Природу логику и порядок научного эксперимента и по явлениям такого рода жаждем распознать существа, подобные нам. Однако мы не наблюдаем таких явлений. Что же – их нет?.. И в самом деле, есть что-то наводящее глубокую печаль в молчании, которым звезды отвечают на этот вопрос, в молчании столь полном, словно оно вечно.
(f) Уникальность человека
Советский ученый Баумштейн[26]занимает в обсуждаемом вопросе противоположную позицию. Он считает, что длительность жизни единожды возникшей цивилизации почти неограниченна, то есть должна составлять миллиарды лет. С другой стороны, частота биогенеза чрезвычайно низка. Он рассуждает следующим образом. Вероятность, что из какой-нибудь икринки трески вырастет взрослая рыба, очень мала. Но благодаря обилию икринок (около трех миллионов в одном нересте) вероятность того, что по крайней мере из одной или двух из них вырастет рыба, близка к единице. Этот пример явления, которое хотя и весьма мало вероятно в каждом отдельно взятом случае, но весьма правдоподобно при рассмотрении совокупности таких явлений, автор сопоставляет с процессами биогенеза и антропогенеза. В результате вычислений, которые мы не будем приводить, он приходит к выводу, что из миллиарда планет Галактики только немногие, – а может быть, только одна Земля – обладают «психозоем». Баумштейн использует теорию вероятностей, которая утверждает, что при очень малых шансах реализации определенного явления для того, чтобы оно действительно наступило, необходимо многократно создавать ситуации, предшествующие этому явлению. Так, например, очень мало вероятно, чтобы у игрока, бросившего кость десять раз подряд, выпало десять шестерок. Но если одновременно будет бросать кости миллиард игроков, то вероятность хотя бы одного выпадения десяти шестерок подряд оказывается гораздо большей. Возникновение человека было обусловлено огромным количеством причин. Так, сначала должен был возникнуть общий предок всех позвоночных – рыбы, а гегемония пресмыкающихся с их крохотным мозгом должна была уступить место эре млекопитающих. Затем из млекопитающих должны были выделиться приматы; на появление из них человека решающее влияние, как можно предполагать, оказали ледниковые периоды. Оледенения существенно увеличили давление отбора и предъявили огромные требования к регулировочным способностям организмов. Это привело к энергичному развитию «гомеостатического регулятора второго рода» – мозга. Этот вывод правилен, но с существенной оговоркой. Баумштейн в действительности показал, что некоторые организмы могли возникнуть лишь на планете, обладающей большим одиночным спутником (этот спутник вызывает явления приливов и отливов, что в свою очередь создает особые условия существования в прибрежных районах), и что «цефализация» – рост мозга прачеловека – вероятно, существенно ускорилась из-за ледниковых периодов, которые нарушили ход и вместе с тем усилили отбор. Сами эпохи оледенения, как считают, в свою очередь вызываются спадом активности Солнца, происходящим раз в несколько десятков миллионов лет. Одним словом, автор доказал действительную редкость антропогенеза, но в его буквальной форме. Иначе говоря, он показал, как маловероятна была бы гипотеза о возникновении под солнцами других планет человекоподобных организмов. Этот вывод, однако, не решает вопроса о частоте космического биогенеза и биоэволюции. Вероятностная модель развития (одной трески из миллиона икринок) здесь неприменима. То, что из трех миллионов икринок вырастает только одна особь, означает в то же время гибель икринок, из которых рыбы не развились. Но если бы из приматов не развился вид Homo sapiens, это вовсе не означало бы, что разумные существа на Земле больше не могли бы возникнуть. Начало им могли бы дать, например, грызуны. Вероятностная модель типа игры в кости неприменима к таким самоорганизующимся системам, как эволюция. Такая модель всегда предполагает либо выигрыш, либо проигрыш, иначе говоря, это есть игра по принципу «все или ничего». Эволюция же склонна ко всевозможным компромиссам: если она «проигрывает» на суше, то размножает другие организмы в воде или воздухе; если целая ветвь животных гибнет, ее место вскоре занимают благодаря адаптивной радиации другие организмы. Эволюция – игрок, не сразу признающий свое поражение. Она не похожа на противника, который стремится либо преодолеть преграду, либо пасть, словно каленое ядро, которое может или разбиться о стену, или пробить ее. Скорее она подобна реке, которая огибает преграду, меняя свое русло. И так же как нет на Земле двух рек с абсолютно одинаковым течением и формой русла, так наверняка и в Космосе нет двух одинаковых «рек» (или «древ») эволюции. Поэтому упомянутый автор доказал нечто иное, чем намеревался. Он показал, что повторения земной эволюции на других планетных системах неправдоподобны и что наиболее неправдоподобным является повторение хода эволюции, приведшего к формированию того человека, которого мы знаем. Другой вопрос, что в биоэволюции формируется случайным путем (а случайным в этом понимании является существование у Земли большого спутника – Луны), а что является конечным результатом действия законов гомеостатических систем. Здесь, по правде говоря, мы ничего не знаем. Наибольший повод для размышления дают те «повторения», те бессознательные «автоплагиаты», в которые эволюция впадала, когда по прошествии миллионов лет повторяла процессы приспособления организмов к среде, которую они давно уже покинули. Киты вновь уподобились рыбам, по крайней мере своей внешней формой. Что-то похожее произошло и с некоторыми черепахами, которые сначала обладали панцирями, потом совершенно утратили их, а затем создали вновь, через десятки тысяч поколений. Панцири «первичных» и «вторичных» черепах весьма сходны, но одни возникли из костей внутреннего скелета, а другие – из ороговевших кожных тканей. Сам по себе этот факт указывает на то, что «моделирующее» давление среды решающим образом приводит к созданию близких с конструкторской точки зрения форм. По-видимому, движущими силами всякого эволюционного процесса служат, во-первых, изменения передаваемой из поколения в поколение наследственной информации и, во-вторых, изменения в самой среде. Влияние космических факторов на передачу наследственной информации отметил Шкловский, который выдвинул необычайно оригинальную гипотезу о том, что интенсивность космического излучения (являющегося существенным регулятором числа происходящих мутаций) была переменной и зависела от расстояния планеты, на которой развивалась жизнь до Сверхновой звезды. Интенсивность космического излучения может в таком случае превысить «нормальную» (то есть среднюю для всей Галактики) в десятки, а то и сотни раз. Обращает на себя внимание устойчивость некоторых организмов к влиянию такого излучения, уничтожающего генетическую информацию. Так, например, насекомые могут переносить дозы излучения, в сотни раз большие, чем дозы, смертельные для млекопитающих. Кроме того, у организмов, которые живут дольше, излучение увеличивает частоту мутаций в большей степени, чем у короткоживущих (что могло иметь определенное влияние на «отрицательный отбор» потенциальных Мафусаилов органического мира). Шкловский выдвигает гипотезу о том, что массовая гибель гигантских ящеров в мезозое была вызвана случайным приближением Земли к вспыхнувшей Сверхновой звезде. Итак, мы видим, что влияние среды оказывается более универсальным, чем мы были склонны считать, поскольку оно может определять не только селекционное давление отбора, но и частоту мутаций, изменяющих наследственные черты. В общем можно утверждать, что темп эволюции минимален и даже доходит до нуля, когда условия среды практически не меняются в течение сотен миллионов лет. Примером такой среды являются прежде всего глубины океанов, в которых до наших времен сохранились некоторые формы животных (а именно рыб), не изменившиеся, по сути дела, с мелового и юрского периодов. Планеты с большей, чем у Земли, стабильностью климата и геологии (то есть те, которые мы склонны почесть за «рай», имея в виду их «приспособленность» для существования жизни) в действительности могут представлять собой области гомеостатического застоя, так как жизнь эволюционирует не благодаря «встроенной» в нее тенденции к «прогрессу», а только перед лицом грозящей опасности. С другой стороны, слишком бурные изменения типа тех, которые встречаются вблизи переменных или двойных звезд, либо вообще исключают возможность возникновения жизни, либо постоянно грозят прервать ход начавшейся органической эволюции. Эволюция, как мы считали, может возникать на многих небесных телах. Напрашивается вопрос: можно ли утверждать, что всегда, или хотя бы почти всегда, эволюция достигает своей вершины – возникновения разума или же и его возникновение есть случайность, внешняя по отношению к динамическим закономерностям процесса, нечто вроде случайного выхода на тропинку развития, открывшуюся благодаря стечению обстоятельств. К несчастью, Космос не удостаивает нас пока ответом на этот вопрос и, наверное, не скоро удостоит. Поэтому мы со всей нашей проблематикой вынуждены вернуться на Землю и обходиться лишь теми знаниями, которые можно почерпнуть из рассмотрения явлений, происходящих лишь на Земле.
(g) Разумная жизнь: случайность или закономерность?
«Неразумные» животные и растения могут приспособляться к изменениям, вызванным факторами среды, например связанным с временами года. Эволюционный каталог гомеостатических решений этой задачи огромен. Периодическая утрата листвы, образование спор, зимняя спячка, метаморфозы насекомых – это лишь немногие из возможных примеров. Дело, однако, в том, что регуляционные механизмы, определяемые генетической информацией, могут противостоять только таким изменениям, благодаря которым эти механизмы отобраны в тысячах предыдущих поколений. Точность инстинктивного поведения становится никчемной, когда возникает необходимость в решении новых задач, к которым вид в целом не приспособлен (то есть когда соответствующие реакции не были отобраны и закреплены генетически). У растения, бактерии или насекомого как «гомеостатов первой ступени» реакции на изменения среды заложены с момента рождения. Применяя язык кибернетики, можно сказать, что эти системы (особи) заранее «запрограммированы» ко всем тем возможным изменениям среды, к которым они должны приспособляться для сохранения своей жизни и для поддержания существования вида. Такие изменения чаще всего носят ритмичный характер (смена дня и ночи, времен года, приливы и отливы) и реже являются непериодическими (таково, например, приближение хищника; оно вызывает действие готовых механизмов оборонительных реакций: бегство, застывание в «мнимой смерти» и т.п.). Когда же происходят изменения, выбивающие организм из его «равновесия» со средой, когда происходят изменения, которые не были предусмотрены «программой» инстинктов, реакции «регулятора первой ступени» оказываются недейственными и начинается кризис. С одной стороны, резко повышается смертность неприспособленных организмов и одновременно усиливается отбор, что дает преимущество определенным новым формам (мутантам); это может привести в конце концов к включению в систему «генетического программирования» реакций, необходимых для выживания. С другой стороны, возникают исключительно благоприятные возможности для организмов, наделенных «регулятором второго типа», то есть мозгом, который в зависимости от требований среды может изменять «программу действий» («самопрограммирование за счет обучения»). Вероятно, существуют такие изменения среды, такой их темп и такая последовательность (ее можно назвать «лабиринтной», имея в виду лабиринты, посредством которых ученые исследуют способности животных, например мышей), с которыми эволюционная пластичность регуляторов, созданных генетическим путем, – инстинктов – не может «справиться». В этом случае преимущество получают процессы развития центральной нервной системы (гомеостатического устройства «второй ступени») как системы, действие которой основано на создании пробных моделей ситуации. Организм уже «на собственный страх и риск», не опираясь на готовую программу действия, либо приспосабливает себя к изменившейся среде (мышь учится находить выход из лабиринта), либо среду приспосабливает к себе (человек создает цивилизацию). Существует, разумеется, и третья возможность – «проигрыш»; создав ошибочную модель ситуации, организм не достигает нужного результата и гибнет. Организмы первого типа «все знают заранее». Организмы второго типа должны еще обучаться правильному поведению. Преимущества, которые дает первый тип «конструкции» организмов, оплачиваются их узкой специализацией, цена же преимуществ организмов второго типа – риск. «Канал», по которому передается наследственная информация, имеет ограниченную пропускную способность, вследствие чего количество заранее запрограммированных действий не может быть слишком большим; это мы имели в виду, когда говорили об «узкой специализации» регулировки. Обучение же представляет собой подготовительный этап, когда организм весьма подвержен опасности совершения ошибок, которые порою стоят ему жизни. Поэтому-то, вероятно, до сих пор в мире животных существуют оба эти основные типа регуляторов; существуют среды, в которых поведение, хотя и стереотипное, но «заложенное от рождения», имеет большую ценность, чем дорогостоящее обучение на собственных ошибках. Отсюда, кстати говоря, и берется «чудесное совершенство» инстинктов. Все это звучит весьма правдоподобно, но что отсюда следует для общих законов энцефалогенеза? Должна ли эволюция создавать в конце концов мощный «регулятор второй ступени», каковым является огромный мозг человекоподобных существ? Или же, если на планете дело не доходит до «критических изменений», мозги как ненужные на ней не создаются? Дать ответ на так поставленный вопрос нелегко. Поверхностное знакомство с эволюцией склоняет скорее к наивной концепции прогресса: у млекопитающих мозг был больше, чем у ящеров, – значит, они обладают и «большей разумностью», поэтому-то они и вытеснили ящеров. Однако млекопитающие сосуществовали с ящерами в течение сотен миллионов лет, образуя второстепенные, мелкие формы по сравнению с царствовавшими пресмыкающимися. В последнее время мы нечто подобное слышим о дельфинах: говорят, что по сравнению со всеми другими организмами, живущими в море, они наиболее разумны. Между тем они отнюдь не стали единственными владыками морских просторов. Мы склонны переоценивать разум, рассматривая его как «ценность саму по себе». Эшби приводит в этой связи целый ряд интересных примеров. Медленно обучающаяся «тупая» мышь осторожно пробует предложенную ей пищу. «Сообразительная» мышь, научившись тому, что приманка находится всегда на том же самом месте в одно и то же время, на первый взгляд имеет больше шансов выжить. Но если в приманку положить яд, то «тупая» мышь, которая «ничему не научилась» благодаря своей инстинктивной недоверчивости, переживет «сообразительную» мышь, которая наестся отравы и сдохнет. Поэтому не каждая среда дает преимущество разумности. С общих позиций экстраполяция опыта (его «перенос») весьма полезна в земной среде. Возможны, однако, и среды, в которых эта черта становится минусом. Известно, что более искусный стратег обычно побеждает менее искусного; вместе с тем он может потерпеть поражение от совершенного профана, поскольку действия последнего будут настолько «неразумны», что их нельзя будет предвидеть. Привлекает внимание тот факт, что эволюция, столь «экономная» во всех случаях передачи информации, создала мозг человека – устройство с такой степенью «избыточности», что оно и сейчас, в XX веке, все еще превосходно справляется с проблемами развитой цивилизации, – анатомически, биологически тот же самый, что и мозг нашего примитивного «варварского» предка, жившего сто тысяч лет назад. Каким образом эта огромная «перспективная потенция разума», эта «избыточность», как бы готовая на заре истории начать строительство цивилизации, возникла в ходе чисто вероятностной эволюционной игры в сложение двух векторов: увеличения числа мутаций и усиления естественного отбора? В теории эволюции нет определенного ответа на этот вопрос. Исследования показывают, что для мозга каждого животного, вообще говоря, характерна значительная «избыточность»; она выражается в том, что животное может разрешать задачи, с которыми оно никогда не встречалось в обычной жизни, пока эти задачи не поставил ему ученый-экспериментатор. Фактом является также и рост массы мозга у всех животных. Современные земноводные, пресмыкающиеся, рыбы, вообще все представители мира животных обладают большим мозгом, чем их предки в палеозое или мезозое. В этом смысле в ходе эволюции «поумнели» все животные. Эта всеобщая тенденция свидетельствует как будто о том, что, если процесс эволюции длится достаточно долго, масса мозга в конце концов проходит через «критическое значение» – и тогда начинается лавинная реакция социогенеза. Но от поспешной «экстраполяции на Космос» этого «тяготения к разуму» как конструктивной тенденции эволюционных процессов мы должны воздержаться. Определенные свойства самого «материала», или «нулевого цикла строительства», могут уже с самого начала эволюции так ограничить ее будущие возможности и так жестко определить ее потолок, что до возникновения «регуляторов второго типа» дело не дойдет. Примером могут служить насекомые, одна из старейших, наиболее жизнеспособных и плодовитых групп животных: на Земле в настоящее время описано 700000 их видов, в то время как все позвоночные насчитывают 80000 видов. Насекомые составляют более трех четвертей всего царства животных – и тем не менее они не стали разумными. К тому же насекомые существуют на протяжении приблизительно того же отрезка времени, что и позвоночные, поэтому их почти десятикратный перевес в численности видов должен был бы дать им, со статистической точки зрения (если бы статистика решала дело), в десять раз больше шансов на создание «регуляторов второго типа». Тот факт, что этого не произошло, отчетливо свидетельствует о неприменимости к явлениям психогенеза вероятностных соображений в качестве решающего критерия. Таким образом, возникновение психогенеза возможно, но нисколько не обязательно. Психогенез – это эволюционное решение, которое является одним из лучших, но не всегда, не для всех миров оптимальным. Чтобы сконструировать разум, Эволюция должна располагать весьма разнообразными факторами: такими, как не слишком большая гравитация, умеренная величина интенсивности космического излучения, изменчивость среды (в частности, не только циклическая), и многими другими, еще не известными нам. Нужная комбинация этих факторов на планетах не является, однако, чем-то исключительно редким. Поэтому-то, несмотря ни на что, можно ожидать, что в Космосе мы встретим разум, хотя формы его проявления могут глумиться над нашим воображением.
(h) Гипотезы
Создалась парадоксальная ситуация. Пытаясь заглянуть в будущее цивилизации, мы искали поддержки и неожиданно получили помощь от астрофизики, которая методами статистики исследует частоту появления разумной жизни в Космосе... но тут же выводы этих исследований мы подвергли сомнению. Астрофизик мог бы спросить, на каком основании это было сделано: ведь его компетенция в ключевом вопросе – в вопросе об отличии «естественных» астрономических явлений от «искусственных» – несравненно выше нашей. Этот вполне резонный упрек требует ответа. По частям ответ уже был дан в предыдущих разделах данной главы, и теперь нам остается только систематизировать его. Следует заметить, что радиоастрономия лишь развивается. Продолжаются попытки обнаружения космических сигналов.[27]Если в ближайшие годы будут открыты явления астроинженерии или получены сигналы искусственного происхождения, то это будет, очевидно, иметь огромное значение. Однако полное отсутствие позитивных данных будет иметь еще большее значение – и тем большее, чем дольше будут продолжаться соответствующие эксперименты и чем чувствительнее будет приемная аппаратура. Через определенный, достаточно большой срок полное отсутствие таких явлений должно будет привести к пересмотру взглядов на био– и психогенез в Космосе. На сегодняшний день это еще преждевременно. Тем не менее современный уровень знаний уже связывает нас при выдвижении гипотез. Отсутствие «чудес» и космической «сигнализации» мы примем к сведению так, как это делает астрофизик. Таким образом, мы подвергаем сомнению не сам материал наблюдений, а лишь его интерпретацию. Перечислим три вида гипотез, каждая из которых объясняет «вакуум психозоя». I. Цивилизации возникают в Космосе редко, но являются долговечными. На одну галактику встречается до десятка с лишним цивилизаций. Следовательно, одна планета с «психозоем» приходится на миллиарды звезд. Эту гипотезу мы наравне с астрофизиками отвергаем, так как она противоречит общепринятым взглядам, согласно которым возникновение планетных систем и появление на них жизни – это типичные явления в Космосе. Но сделаем оговорку: при всей ее маловероятности эта гипотеза не обязательно ложна. Поскольку галактики, как и звезды, разнятся в возрасте, в галактиках более старых, чем наша, должна присутствовать астроинженерная деятельность, которую можно обнаружить при достаточном усовершенствовании аппаратуры. При этом мы (как и астрофизики) предполагаем, что все или почти все цивилизации (сколь немногочисленными они бы ни были) развиваются по технологическому пути, который через достаточно большое время приводит к астроинженерной деятельности. II. Цивилизации возникают в Космосе часто, но их жизнь весьма кратковременна. Это вытекает из а) тенденции к «автоликвидации», б) тенденции к «вырождению», в) по причинам, совершенно нам непонятным, которые начинают действовать на определенном этапе развития цивилизаций. Гипотезам именно этой категории посвятил наибольшее внимание в своей монографии Шкловский. Самым важным для нас является рассмотрение основных постулатов, на которые опираются эти гипотезы. Эти постулаты можно свести к двум: 1) считается, что подавляющее большинство цивилизаций идет по точно такому же пути развития, как и земная, то есть по технологическому; 2) темп развития цивилизаций считается неизменным хотя бы в астрономических масштабах (где отклонение порядка миллиона лет не имеет значения). Следовательно, основой этой группы гипотез является предположение об ортоэволюционном характере развития почти всех цивилизаций. Молчаливо предполагается, что ускорение технологического прогресса, которое на протяжении лет двухсот мы наблюдаем на Земле, является динамически устойчивым процессом, затормозить который могут только деструктивные причины («вырождение», «самоубийство» цивилизации). Поэтому основной чертой развития цивилизаций должен быть экспоненциальный рост, который ведет непосредственно к астроинженерной деятельности. Оба эти предположения можно подвергнуть критике. У нас ведь нет никаких данных, позволяющих выяснить, является ли технологический путь и в самом деле проявлением закона развития «психозоя». Может быть, и нет. Тем не менее в соответствии с принципом Оккама мы не вводим «излишних сущностей», то есть гипотез, не опирающихся на факты. Мы предполагаем, что технологический путь развития типичен, поскольку самих себя и всю нашу историю мы считаем заурядным космическим явлением, обычным, а значит, и типичным. Иначе обстоит дело со вторым предположением. Действительно, ход исторического процесса демонстрирует непрерывный начиная с промышленной революции экспоненциальный рост нашей цивилизации. Тем не менее существуют определенные и веские факты, говорящие о возможном изменении динамики этого процесса. Если мы подвергнем сомнению постоянство (в астрономическом масштабе времени) темпа техноэволюции, то откроется возможность другого решения проблемы. Можно говорить поэтому о третьей группе гипотез, согласующихся с наблюдаемыми (а скорее – с ненаблюденными) фактами. III. Цивилизации возникают в Космосе часто и являются долговечными, но развиваются неортоэволюционно. Кратковременно не их существование, кратковременна лишь определенная фаза их развития, характеризующаяся ростом по экспоненциальному закону. Эта экспансивная фаза развития протекает в астрономическом масштабе очень недолго: до десяти с лишним тысяч лет (как мы увидим, скорее всего даже намного меньше). После этого динамическая характеристика развития изменяется. Однако эта смена не имеет ничего общего ни с «автоликвидацией», ни с «вырождением». Дальнейшие пути развития различных цивилизаций могут сильно отличаться друг от друга. Эта многозначность путей дальнейшего развития определяется причинами, о которых мы будем специально говорить. Рассуждения эти не будут нарушением запрета бесплодных спекуляций, так как факторы, изменяющие динамику развития, можно в зародыше обнаружить уже в современном мире. Они носят внеобщественный, внесоциальный характер и определяются просто самой структурой мира, в котором мы живем, тем, что этот мир таков, каков он есть. Попробуем описать возможную смену поведения, которую проявляет цивилизация по достижении ею определенного этапа развития. Поскольку в известных пределах цивилизация может свободно выбирать стратегию дальнейшего поведения, мы, естественно, не в силах предвидеть, что с нею будет. Из многих вариантов мы отберем те, которые соответствуют фактам, то есть удовлетворяют предположению о существовании многочисленных обитаемых миров, существовании очень длительном, но астрономически ненаблюдаемом. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.017 сек.) |