АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Могут ли от блондинов родиться брюнеты?

Читайте также:
  1. Внебюджетные фонды могут создаваться на всех уровнях управления
  2. Возрастные группы могут быть подразделены и на более мелкие категории.
  3. Все названные виды поражений могут быть условно разделены на два профиля: хирургический и терапевтический.
  4. Вывод: предметом договора продажи недвижимости в принципе могут быть будущие недвижимые вещи, за изъятиями закона (ЗК, например) и специфики товара (предприятие и жилье).
  5. Граждане Республики Беларусь могут иметь в собственности жилые помещения без ограничения их количества и площади
  6. Держись с теми, кто не пьет и не курит, особенно в ситуации, когда могут предложить сигареты или алкоголь.
  7. Для создания фермерского хозяйства и осуществления его деятельности могут предоставляться и приобретаться земельные участки из земель сельскохозяйственного назначения.
  8. Земли промышленности и иного специального могут предоставляться в безвозмездное срочное пользование для сельскохозяйственного производства и иного использования.
  9. Зона периферийного зрения – для ориентации во внешней обстановке. Число точечных объектов, которые могут быть одновременно восприняты, не более 7.
  10. И взятки могут быть правильными
  11. К категории публичных юридических лиц, могут обладать свой-
  12. Какие действия из перечисленного, скорей всего, помогут быстро попасть в фазу, проснувшись в состоянии сонного паралича?

 

На некоторых хромосомах гены или комплексы генов заметны в виде черных поперечных полос. Иные хромосомы человека содержат до 40 тысяч генов, а возможно, даже и больше. Каждый из них расположен на строго определенном месте.

Участок хромосомы, занимаемый геном, называют локусом. В каждом локусе располагается только один из двух антагонистических или альтернативных по своему действию генов. Возьмем для примера гены, определяющие такую всем хорошо знакомую наследственную черту, как цвет волос у человека. В одном локусе в этом случае может быть только либо ген темных, либо ген светлых волос. Но никогда оба вместе. Таких два родственных, но взаимно исключающих друг друга гена называют аллелями. Обычно у каждого локуса два аллеля. Но нередко бывает их и несколько. Тогда говорят о множественных аллелях.

Обозначим для удобства аллель темных волос большой буквой «А», а аллель светлых – малой буквой «а».

Итак, каждая хромосома содержит в себе только один из двух аллелей. Либо «А» – большое, либо «а» – малое. Но не оба одновременно. Второй аллель может найти пристанище только в другой гомологичной, парной, хромосоме. Ведь клетки всех животных и высших растений диплоидные. В них каждая хромосома имеет свою внешне во всем подобную пару, с которой конъюгирует в мейозе. Не забудьте, что один член гомологичной пары получен от отца, а другой – от матери.

И вот что происходит.

Допустим, что многие поколения предков нашего гипотетического индивидуума не имели в своем роду блондинов. Вполне возможно тогда, что в клетках его родителей обе парные хромосомы, несущие гены, определяющие цвет волос, будут содержать по одному аллелю, обозначенному нами большой буквой «А».

В каждую родительскую гамету при делении половых клеток попадет, значит, по одной хромосоме с аллелем «А» – большое. При делении клеток они разойдутся по разным гаметам. А когда гаметы отца и матери сольются, в зиготе их потомка окажутся снова две гомологичные хромосомы. Каждая с аллелем «А» – большое. Значит, человек, который разовьется из этой зиготы, будет темноволосым. Сходную картину получим и когда родители блондины.

Но совсем иную, когда один из родителей – блондин, а второй – брюнет. В этом случае их потомок будет иметь в своих клетках хромосомы с двумя разными аллелями, определяющими цвет волос: «А» – большое и «а» – малое. Иначе говоря, одна из его гомологичных хромосом будет в соответствующем локусе нести ген темных волос, а другая в том же локусе – ген светлых волос.

Генотипы, в которых присутствуют альтернативные аллели, называют гетерозиготными по этим аллелям. А те, где аллели одинаковые, как в первых разобранных нами случаях, – гомозиготными.

Какого же цвета волосы будут у гетерозиготного человека, у которого один из родителей был блондином, а другой – шатеном? Наверное, какого-нибудь промежуточного оттенка? Нет. Совсем нет. Волосы у него будут… темные.

 

 

Очень многие гены ведут себя так: когда в одной клетке встречаются два аллеля, то один из них подавляет действие другого. Подавляет так сильно, будто слабого аллеля и вовсе нет в зиготе.

Сильные гены, которые подавляют своих слабых партнеров, называют доминантными. А слабые, подавленные аллели – рецессивными, отступающими. Гены, определяющие цвет волос блондинов, рецессивны по отношению к генам темных волос. Поэтому блондины родятся только от блондинов или от гетерозиготных брюнетов и шатенов, то есть людей, в роду которых были блондины. И никогда от блондинов не могут родиться брюнеты. Никогда.

Почему? Потому, что блондины всегда гомозиготны. Иначе говоря, не имеют в своем генотипе задатков темных волос.

 

Наследственность квантуется, как всякое вещество и энергия!

 

Этот очень важный закон наследственности – закон доминирования одних генов над другими – был открыт Грегором Менделем, сыном крестьянина и августинским монахом. Сто лет назад в монастырском саду в городе Брно в Чехословакии, а в то время – в Австро-Венгрии, он проводил свои основательно продуманные и тщательно выполненные опыты над растительными гибридами.

Мендель скрещивал разные сорта гороха, фасоли, кукурузы и других растений. Исследовал более 10 тысяч гибридов. Две статьи, в которых он изложил результаты своих опытов, были опубликованы в трудах местного общества естествоиспытателей в 1865 и 1869 годах.

Но современники Менделя не оценили их. Только через 35 лет пришла к нему мировая слава. В 1900 году одновременно и независимо друг от друга три крупных ботаника – Корренс, Чермак и де Фриз – «открыли» забытые работы Менделя. В тот год и родилась генетика.

Закономерности, замеченные Менделем в наследственных свойствах гороха, легли в основу новой науки, начавшей победное шествие по всем странам мира.

В чем суть открытия Менделя? Почему две небольшие его статьи полностью изменили представления биологов о явлениях наследственности и дали толчок развитию величайшей из современных наук?

До Менделя разные «гипотезы» и представления о наследственности походили на забавные анекдоты. Многие зоотехники верили, например, что отец «чаще передает своим потомкам переднюю часть тела, а мать заднюю». Правда, позднее в это «генетическое правило» была внесена небольшая поправка. Она касалась хвоста. Он, хвост, утверждала поправка, хотя и лежит в области материнских прав на наследование, но передается тем не менее отцом.

Думали также, будто от отца наследуются внешние формы, а от матери – внутренние органы, что слишком молодые и слишком старые или даже просто голодные люди и животные с меньшей наследственной силой награждают своими свойствами потомков, чем зрелые и сытые.

 

 

В общем никто ничего толком не знал о наследственности.

Одна за другой серьезными исследователями были отвергнуты все гипотезы, которые пытались как-то объяснить величайшую из тайн природы. И еще в 1871 году врач и зоотехник Вилькенс, который сам немало потрудился над этой головоломкой, пришел в конце концов к невеселому заключению: «Законы, управляющие наследственностью, совершенно неизвестны, и никто не может сказать, как это происходит, что одна и та же особенность иногда наследуется, а иногда нет».

Когда писались эти слова, безвестный натуралист-любитель из монастыря под Брно заканчивал свои опыты с горохом. И эти опыты помогли, наконец, найти правильную дорогу среди «строительного мусора» отвергнутых теорий.

Многие крупные биологи, и в их числе Чарлз Дарвин, пытались понять смысл генетических законов. Возможно, их неудачи происходили оттого, что биологи до Менделя представляли наследственное вещество в виде однородной и неделимой субстанции. Они думали, что задатки, получаемые организмами от родителей по наследству, смешиваются, как две разносортные жидкости. Поэтому предполагалось, что потомки должны совмещать в себе как бы усредненные свойства обоих родителей.

Мендель, ничего не зная о хромосомах, ясно, однако, показал, что наследственные задатки не смешиваются, как жидкости в сосуде или краски на палитре. Одни из них лишь подавляют другие, когда встречаются в одной зиготе. А потом при новой перекомбинации наследственного вещества подавленные признаки вновь могут проявить себя в следующем поколении, конечно, если окажутся в одной зиготе с себе подобными рецессивными генами, полученными от другого родителя.

Мендель доказал, что доминантные и рецессивные гены свободно комбинируются и, не смешиваясь, свободно расходятся по гаметам при образовании половых клеток. Значит, наследственное вещество, которое содержат гаметы даже одного и того же существа, не однородно в каждой из них.

До него считали, что потомки, обладая промежуточной между родительскими формами конституцией, образуют и половые клетки промежуточного типа. Притом предполагалось, что у каждого существа все половые клетки несут одинаковые задатки. В них наследственное вещество, полученное от обоих родителей, однородно перемешано и равномерно распределено по всем гаметам.

Мендель доказал, что это не так, что отдельные признаки наследуются как обособленные элементарные единицы. Они упорно сохраняют свою индивидуальность, даже тысячи раз переходя из поколения в поколение. Иными словами, он установил дискретность (прерывистость) материальных структур, ответственных за передачу врожденных признаков.

Наследственность квантуется, как всякое вещество и энергия, – вот важный вывод, который был сделан из анализа закономерностей, открытых Менделем. Его вклад в биологию равноценен по значению и по сущности своей созданию квантовой теории в физике.

Сам Мендель не установил никаких законов. Но его последователи сформулировали результаты его исследований в виде трех правил или основных законов наследственности.

«Когда-то, – пишет генетик Корренс, один из трех ботаников, открывших забытые работы Менделя, – астролог пытался путем сложных махинаций проникать в судьбу новорожденного, составляя гороскоп по расположению планет в час рождения. Мы уже давно знаем, что все это было суеверием. Однако в наше время биолог вступает на путь, который сможет привести нас снова к составлению гороскопа».

Но не по звездам, а по генотипу новорожденного, по задаткам, которые он получил в наследство от предков. Ключом к такому гороскопу будут служить расшифрованный биологами генетический код человека и прежде всего законы наследственности, открытые Грегором Менделем.

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)