АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ОСНОВНЫЕ ПОНЯТИЯ. Переходя к изучению вопросов движения жидкости, нужно за­метить, что на первых порах мы будем рассматривать движение так называемой идеальной жидкости

Читайте также:
  1. B. Основные принципы исследования истории этических учений
  2. I. Значение и задачи учета. Основные документы от реализации продукции, работ, услуг.
  3. I. ОСНОВНЫЕ ПОНЯТИЯ (ТЕРМИНЫ) ЭКОЛОГИИ. ЕЕ СИСТЕМНОСТЬ
  4. I. ОСНОВНЫЕ СПОСОБЫ ПЕРЕДВИЖЕНИЯ И ПРЕОДОЛЕНИЯ ПРЕПЯТСТВИЙ
  5. I. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ
  6. I. Основные термины и предпосылки
  7. I. ОСНОВНЫЕ ТРЕБОВАНИЯ К СИСТЕМАМ ЭЛЕКТРОСНАБЖЕНИЯ
  8. I.3. Основные этапы исторического развития римского права
  9. II Съезд Советов, его основные решения. Первые шаги новой государственной власти в России (октябрь 1917 - первая половина 1918 гг.)
  10. II. ИСЧИСЛЕНИЕ БЕСКОНЕЧНО–МАЛЫХ И ЕГО ОСНОВНЫЕ КАТЕГОРИИ
  11. II. Основные задачи и функции
  12. II. Основные задачи и функции

ОСНОВНЫЕ УРАВНЕНИЯ ГИДРАВЛИКИ

 

Переходя к изучению вопросов движения жидкости, нужно за­метить, что на первых порах мы будем рассматривать движение так называемой идеальной жидкости, т. е. такой воображаемой жидкости, которая совершенно лишена вязкости, и лишь потом перейдем к изучению реальных потоков. В такой невязкой жидко­сти, так же как и в неподвижных реальных жидкостях, возможен лишь один вид напряжений — нормальное напряжение сжатия, т. е. гидромеханическое давление, или просто давление.

Давление в движущейся идеальной жидкости обладает теми же свойствами, что и в неподвижной жидкости, т. е. на внешней по­верхности жидкости оно направлено по внутренней нормали, а в любой точке внутри жидкости—по всем направлениям одинаково.

Течение жидкости может быть установившимся (стационарным) или неустановившимся (нестационарным).

Установившееся течение—это течение неизменное по времени, при котором гидромеханическое давление и скорость являются функциями лишь координат, но не зависят от времени. Давление и скорость могут изменяться при перемещении частиц жидкости из одного положения в другое, но в данной неподвижной относи­тельно русла точке величины давления и скорости при установив­шемся движении не меняются по времени.

Математически это можно записать так:

где индексы у скорости означают проекции этой скорости на со­ответствующие оси, жестко связанные с руслом.

В частном случае установившееся течение может быть равно­мерным, когда скорость каждой частицы не меняется с изменением ее координат.

В общем случае неустановившегося течения давление и ско­рость зависят как от координат, так и от времени, т. е.

Примерами неустановившегося течения жидкости могут слу­жить постепенное опорожнение сосуда через отверстие в дне или движение жидкости во всасывающей или напорной трубе простого поршневого насоса, поршень которого совершает возвратно-поступательное движение.

Примеры установившегося течения: истечение жидкости из со­суда, в котором поддерживается постоянный уровень; движение жидкости в замкнутом трубопроводе, создаваемое работой центро­бежного насоса с постоянным числом оборотов.

Исследование установившихся течений гораздо проще, чем не­установившихся. В дальнейшем мы будем рассматривать главным образом установившиеся течения и лишь некоторые частные случаи неустановившегося течения.

Траектории частиц жидкости при установившемся течении яв­ляются неизменными по времени кривыми.

При неустановившемся течении траектории различных частиц, проходящих через данную точку пространства, будут иметь разную форму. Поэтому для рассмотрения картины течения, образующейся в каждый данный момент времени, вводится понятие линии тока.

Линией тока называется такая линия в движущейся жидкости, касательные к которой в любой ее точке совпадают с направлением векторов скорости частиц, расположенных на этой линии в дан­ный момент времени (рис. 22).

Очевидно, что в условиях установившегося течения линия тока совпадает с траекторией и не изменяет своей формы с течением времени.

Если в движущейся жидкости взять элементарный замкнутый контур и через все его точки провести линии тока, то образуется трубчатая поверхность, называемая трубкой тока. Часть потока, заключенная внутри трубки тока, называется струйкой (рис. 23).

При стремлении поперечных размеров струйки к нулю струйка в пределе обращается в линию тока.

В любой точке боковой поверхности струйки, т. е. трубки тока, векторы скорости направлены по касательным, а нормальные к этой поверхности составляющие скорости отсутствуют, следова­тельно, ни одна частица жидкости ни в одной точке трубки тока не может проникнуть внутрь струйки или выйти наружу. Трубка тока, таким образом, является как бы непроницаемой стенкой, а элементарная струйка представляет собой самостоятельный эле­ментарный поток.

Потоки конечных размеров мы будем на первых порах рассмат­ривать как совокупность элементарных струек, т. е. течение будем предполагать струйным. Вследствие различия скоростей соседние струйки будут скользить одна по другой, не перемешиваясь друг с другом.

Живым сечением или просто сечением потока называется в об­щем случае поверхность в пределах потока, проведенная нормаль­но к линиям тока. Обычно в потоках рассматривают такие участки, в которых струйки можно считать параллельными и, следовательно, живые сечения — плоскими.

Различают течения жидкости напорные и безнапорные. Напор­ными называют течения в закрытых руслах без свободной поверх­ности, а безнапорными — течения со свободной поверхностью. При напорных течениях давление вдоль потока обычно переменное при безнапорном—постоянное (чаще всего атмосферное). Примерами напорного течения могут служить течения в трубопроводах с повы­шенным (или пониженным) давлением, течения в гидромашинах и других гидроагрегатах. Безнапорными являются течения в реках, открытых каналах и лотках. В данном курсе мы будем рассматри­вать почти исключительно течения напорные.


1 | 2 | 3 | 4 | 5 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)