АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Течение восстановительных процессов в организме спортсменов после выполнения тренировочных нагрузок различного характера

Читайте также:
  1. B. Департаменты и управления функционального характера.
  2. ESC-последовательности
  3. F Продолжение выполнения задания
  4. F Продолжение выполнения задания
  5. F Продолжение выполнения задания
  6. F Продолжение выполнения задания
  7. Flх.1 Употребление с вредными последствиями
  8. FMEA - анализ причин и последствий отказов
  9. II. Катетеризация мочевого пузыря мягким катетером (у женщин). Показания противопоказания, техника выполнения.
  10. II. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ВЫПОЛНЕНИЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ
  11. II. Подкожная инъекция. Область постановки, техника выполнения процедуры. Осложнения.
  12. II. Правила безопасного поведения в ситуациях криминального характера.

Тренировочные занятия являются основной структурной единицей тренировочного процесса. Рациональное планирование их на основе научных знаний о механизмах развития и компенсации утомления, а также динамики протекания восстановления при выполнении различных тренировочных нагрузок во многом определяет эффективность всего процесса тренировки.

Ещё И. П. Павловым были вскрыты ряд закономерностей течения восстановительных процессов, не потерявших значения в настоящее время.

1. В работающем органе наряду с процессами разрушения и истощения происходит процесс восстановления, он наблюдается не только после окончания работы, но уже и в процессе деятельности.

2. Взаимоотношения истощения и восстановления определяются интенсивностью работы; во время интенсивной работы восстановительный процесс не в состоянии полностью компенсировать расход, поэтому полное возмещение потерь наступает позднее, во время отдыха.

3. Восстановление израсходованных ресурсов происходит не до исходного уровня, а с некоторым избытком (явление избыточных компенсаций).

Наиболее ранние наблюдения, касающиеся восстановительных процессов после работы, имеют полуторавековую давность. Ещё в 1845 г. было установлено, что телесное движение оказывает большое и длительное влияние на выделение углекислоты. Позднее было показано, что это последействие проявляется в повышенном потреблении кислорода, повышенной температуре тела и других признаках. Однако эти наблюдения носили случайный характер и не являлись результатом специальных исследований, направленных на изучение восстановительных процессов.

Взгляды И.П. Павлова развил его ученик Ю. В. Фольборт (1951), который заключил, что повторные физические нагрузки могут вести к развитию двух противоположных состояний:

если каждая последующая нагрузка приходится на ту фазу восстановления, в которой организм достиг исходного состояния, то развивается состояние тренированности, возрастают функциональные возможности организма; если же работоспособность ещё не вернулась к исходному состоянию, то новая нагрузка вызывает противоположный процесс - хроническое истощение. Постепенное исчезновение явлений утомления, возвращение функционального статуса организма и его работоспособности к дорабочему уровню либо превышение последнего соответствует периоду восстановления. Продолжительность этого периода зависит от характера и степени утомления, состояния организма, особенностей его нервной системы, условий внешней среды. В зависимости от сочетания перечисленных факторов восстановление протекает в различные сроки - от минут до нескольких часов или суток при наиболее напряжённой и длительной работе.

В зависимости от общей направленности биохимических сдвигов в организме и времени, необходимом для их возвращения к норме, выделяются два типа восстановительных процессов - срочное и отставленное. Срочное восстановление распространяется на первые 0,5-1,5 часа отдыха после работы; оно сводится к устранению накопившихся за время упражнения продуктов анаэробного распада и оплате образовавшегося долга; отставленное восстановление распространяется на многие часы отдыха после работы. Оно заключается в усиливающихся процессах пластического обмена и реставрации нарушенного во время упражнения ионного и эндокринного равновесия в организме. В период отставленного восстановления завершается возвращение к норме энергетических запасов организма, усиливается синтез разрушенных при работе структурных и ферментных белков. В целях рационального чередования нагрузок необходимо учитывать скорость протекания восстановительных процессов в организме спортсменов после отдельных упражнений, их комплексов, занятий, микроциклов. Известно, что восстановительные процессы после любых нагрузок протекают разновременно, при этом наибольшая интенсивность восстановления наблюдается сразу после нагрузок. По данным В. М. Зациорского (1990), при нагрузках разной направленности, величины и продолжительности в течение первой трети восстановительного периода протекает около 60%, во второй -30% и в третьей - 10% восстановительных реакций. Восстановление функций после работы характеризуется рядом существенных особенностей, которые определяют не только процесс восстановления, но и преемственную взаимосвязь с предшествующей и последующей работой, степени готовности к повторной работе. К числу таких особенностей относят: неравномерное течение восстановительных процессов; фазность восстановления мышечной работоспособности; гетерохронность восстановления различных вегетативных функций; неодинаковое восстановление вегетативных функций, с одной стороны, и мышечной работоспособности - с другой (Гиппенрейтер Б.С., 1966; Розенблат В.В., 1975; Волков В.М., 1977; Граевская Н.Д., 1987, и др.).

Отличительной особенностью протекания восстановительных процессов после тренировочных и соревновательных нагрузок является неодновременное (гетерохронное) возвращение после проделанной тренировочной нагрузки различных показателей к исходному уровню. Установлено, что после выполнения тренировочных упражнений продолжительностью 30 с с интенсивностью 90% от максимальной восстановление работоспособности обычно происходит в течение 90-120 с. Отдельные показатели вегетативных функций возвращаются к дорабочему уровню через 30-60 с, восстановление других может затянуться до 3-4 мин и более.

Подобная тенденция наблюдается и в ходе восстановления после выполнения программ тренировочных занятий, участия в соревнованиях. Гетерохронизм восстановительных процессов обусловлен различными причинами, в первую очередь - направленностью тренировочной нагрузки.

Данные, изложенные в табл. 5, свидетельствуют о процессах восстановления, которые протекают с различной скоростью и завершаются в разное время (Меньшиков В.В., Волков Н.И., 1986).

Таблица 5. Время, необходимое для завершения восстановления различных биохимических процессов в период отдыха после напряжённой мышечной работы

Процессы Время восстановления
Восстановление О2 – запасов в организме 10-15с
Восстановление алактатных анаэробных резервов в мышцах 2-5мин
Оплата алактатного О2 - долга 3-5 мин
Устранение молочной кислоты 0,5-1,5ч
Оплата лактатного О2 - долга 0,5-1, 5ч
Ресинтез внутримышечных запасов гликогена 12-48ч
Восстановление запасов гликогена в печени 12-48ч
Усиление индуктивного синтеза ферментных и структурных белков 12-72ч

Интенсивность протекания восстановительных процессов и сроки восполнения энергетических запасов организма зависят от интенсивности их расходования во время выполнения упражнения (правило В.А. Энгельгартда). Интенсификация процессов восстановления приводит к тому, что в определенный момент отдыха после работы запасы энергетических веществ превышают их дорабочий уровень. Это явление получило название суперкомпенсации, или сверхвосстановления. Протяженность фазы суперкомпенсации во времени зависит от общей продолжительности выполнения работы и глубины вызываемых ею биохимических сдвигов в организме.

Важным фактором, определяющим характер восстановительных процессов, является возраст. Ряд исследователей считают, что у детей восстановительный период после определенных мышечных нагрузок короче, чем у взрослых (Волков В.М., 1972).

Некоторые авторы после проведения функциональных проб не установили достоверных различий в продолжительности восстановления у спортсменов различного возраста. Однако в другом исследовании, в котором для повышения величины нагрузки увеличивали интенсивность, продолжительность и число повторений упражнений, изменяли время отдыха, было показано, что чем меньше возраст обследуемых лиц, тем в большей мере замедляется восстановление вегетативных функций и мышечной работоспособности при многократном повторении бега на 30,100 и 200 м. В то же время у детей в возрасте 11-16 лет после выполнения индивидуальных нагрузок преимущественно на быстроту восстановление протекает быстрее, чем у взрослых (Волков В.М., 1977).

Следует отметить, что для понимания природы восстановительных процессов важны представления о следовых изменениях после тренировочных нагрузок. В связи с этим многие исследователи пытались заменить термин "восстановление" понятием "следовой процесс", или "последействие" (Волков В.М., 1972).

В первых работах, посвящённых анализу последействия напряжённых тренировочных занятий и соревнований, в основном рассматривались изменения состава крови. Так, были установлены фазный характер миогенного лейкоцитоза и значительная его продолжительность. В более поздних исследованиях крови отмечается, что период восстановления картины крови у спортсменов продолжается 3-5 дней, а по некоторым данным 5-7 дней. В исследованиях В. П. Филина (1951) показано, что через 24часа после скоростных и скоростно-силовых упражнений реакция пульса, артериального давления, а также показатели ЭКГ в ответ на дополнительную нагрузку соответствовали исходным данным.

Время восстановления максимального потребления кислорода (МПК) зависит от уровня тренированности и объёма предшествующей работы (Гиппенрейтер Б.С., 1966). В исследованиях М. Я. Горкина с соавт. (1973) по данным внешнего дыхания, силы мышц, морфологических показателей крови и других параметров делаются вывод, что установление высоких спортивных результатов возможно при повторении больших нагрузок в период повышенной работоспособности. Указывается, что показателями полного возврата организма к исходному уровню надо считать восстановление наиболее поздно нормализующихся функций. Подобные представления ориентируют на использование больших тренировочных нагрузок не чаще одного раза в 5-7 дней.

В процессе выполнения тренировочных нагрузок расходуются кислородный запас организма, фосфагены (АТФ и КФ), углеводы (гликоген мышц и печени, глюкозы крови) и жиры. После работы происходит их постепенное восстановление (Коц Я.М., 1986; Мищенко B.C., 1990).

Уже через несколько секунд после прекращения работы кислородные "запасы" в мышцах и крови восстанавливаются. Парциальное напряжение кислорода в альвеолярном воздухе и в артериальной крови не только достигает предрабочего уровня, но и превышает его. Быстро восстанавливается также содержание кислорода в венозной крови, оттекающей от работавших мышц и других активных органов и тканей тела, что указывает на достаточное их обеспечение кислородом в послерабочий период (Коц Я.М., 1986; Мищенко B.C., 1990).

Восстановление фосфагенов, особенно АТФ, протекает очень быстро (Коц Я.М., 1986; Мищенко B.C., 1990). Известно, что запасы АТФ мышцы составляют около 5 ммоль х кг, а запасы КФ - около 20 ммоль х кг. Скорость гидролиза АТФ актомиозином равна приблизительно 3 ммоль КФ в секунду на 1 кг мышечной массы. Уже на протяжение 30 с после прекращения работы восстанавливается до 70 % израсходованных фосфагенов. а их полное восполнение заканчивается за несколько минут, причём почти исключительно за счет энергии аэробного метаболизма, т. е. благодаря кислороду, потребляемому в быстрой фазе восполнения кислородного долга. Чем больше расход фосфагенов за время работы, тем больше требуется кислорода для их восстановления (для восстановления 1 моля АТФ необходимо 3,45 О?).

Восстановление АТФ зависит в основном от скорости, с которой актомиозин использует АТФ. Это определяет мощность процесса. Продолжительность такой нагрузки ограничена содержанием КФ в мышце.

В работе Р. Маргариа с соавт. (1969) было показано, что при интенсивных кратковременных нагрузках в пределах 4-15 с накопления лактата в крови не происходит, так как анаэробный гликолиз при такой работе не участвует в образовании энергии. Затем были получены данные о том, что анаэробный гликолиз включается даже при нагрузке такой длительности. Оказалось, что функции гликолиза заключаются не только в восстановлении АТФ (или, скорее, КФ) после интенсивного мышечного сокращения. При увеличении числа и длительности таких сокращений АТФ, ресинтезированная гликолизом, может быть непосредственно использована актомиозином. Однако скорость синтеза АТФ в результате гликолиза невысока. Это во многом объясняет ограничение возможности спортсмена поддерживать свою максимальную скорость на протяжении дистанции бега на 100 м или сходной с ними дистанции в других видах спорта (Мищенко B.C., 1990).

Специальные лабораторные исследования с использованием биопсии в условиях нагрузки максимальной интенсивности на велоэргометре, моделирующей спринтерскую дистанцию, показали, что гликолитические процессы активизируются уже через 6 с такой нагрузки (Boobis L, Broors S., 1987).

Расчёты показывают, что в беге на 100 м энергия для первых 4-6 с бега образуется в системе АТФ-КФ. Последние же 3-4 с бега резко активизируются реакцией гликолиза. Уменьшение скорости бега квалифицированных спринтеров начинается тогда, когда истощаются запасы высокоэнергетических фосфатов и большая часть энергии начинает поступать за счёт энергии гликолиза (Hirvonen J., RehunenS., Rusko H., 1987). Более быстрые спортсмены характеризуются способностью использовать АТФ-КФ уже в начале спринтерской работы.

Специальные исследования (Costill D., 1985) показали, что после спринтерского бега концентрация лактата и пирувата в широкой мышце бедра увеличивается в 19-26 раз. Имеет место сразу после бега значительное снижение содержания КФ в мышце (на 64%), а также АТФ (на 37%).

Специальная спринтерская тренировка в течение 8 недель приводит к увеличению скорости анаэробного образования АТФ. Это увеличение (по расчётам прироста концентрации лактата и пирувата в мышце под влиянием тренировки) составляет около 20% (табл. 6).

Таблица 6. Изменение мышечных метаболитов гликогена мышц в широкой мышце бедра (ммоль х кг') при "длинном" спринте (30 с) под влиянием спринтерской тренировки (Boobis L.H., Broors S., 1987)

Показатели До тренировки После тренировки
  В покое После работы В покое После работы
Гликоген КФ АТФ Пируват Лактат 310±42 85,1 ±9 26.5 ±3 0,9 ±0,6 3,9+1 214,5±46 28,0 ±11,0 19,2± 10 3,8 ±1,6 86,0 ± 26 346,1 ±56 84,6 ±4,8 24,0 ± 2.5 1,0 ±0.4 4,7±3,1 256,1 ±38 25,5 ±7 17,0±5,6 3,9 ±1,6 103,6 ±24,6

Как видно из табл. 6, спринтерская тренировка не влияла на содержание АТФ и КФ в покое. Однако степень их исчерпания после 30-секундного спринта несколько увеличилась, на этом фоне повышалась концентрация лактата в мышцах и артериальной крови. Следует отметить, что значительный анаэробный гликолиз имеет место и при более коротких (ниже 15 с) спринтерских нагрузках максимальной интенсивности (Hirche Н., 1973; Hirvonen J., Rehunen S., Rusko H., 1987; Мищенко B.C., 1990).

Так, у группы спортсменов при лабораторной (7 с) и естественной беговой нагрузке (50 м - 6,2 с) отмечалось увеличение концентрации лактата в крови до 3,7 и 6,8 ммоль х л-1 соответственно. При беге на 100 м (за 11,6 с) концентрация лактата повышается в среднем до 8,9 ммоль х л-1 Максимальная концентрация у спортсменов данной группы при средней длительности предельной лабораторной нагрузки 52с составила 13,1 ±2,4 ммоль хл-1. Таким образом, при беге на 100 м концентрация лактата составляет 68% от индивидуальной максимальной.

В табл. 7 даётся определенное представление о степени участия анаэробного гликолиза на спринтерских дистанциях.

Таблица 7. Максимальная концентрация лактата в артериальной крови в беге на короткие дистанции (п = 12)

Дистанция м Спортивный результат, с Лактат, ммоль х л1
    4,5 ±0,2
  6,2 ±0,2 6,8 ± 1,6
  11,3 ±0,3 8,9 ± 1,3
  10,8±0,1 8,1 ±0,8
  22,8 ±0,4 15,1 ± 1,8
  50,9 ±0,6 16,2 ±2,3

В беге на короткие дистанции в отдельных случаях отмечены высокие величины концентрации лактата в крови. Так, L. Herrmansen (1977) зафиксировал после бега на 100 м с результатом 10,5 с уровень лактата крови 16,7 ммоль х л-1. Однако обычно уровень концентрации лактата в этом случае составляет 8-9 ммоль х л-1, а скорость аккумуляции лактата около 0,60 ммоль х л-1х Л-1 (Hirvonen J., Rehunen S., Rusko H., 1987).

Острая работа спринтера быстро проходит, его спортивная работоспособность восстанавливается в течение 1,5-2 ч, показателем чего может служить возможность повторений той же дистанции с тем же техническим результатом. Утомление марафонца, лыжника или пловца после преодоления сверхдлинных дистанций снижает их работоспособность на несколько суток. В некоторых случаях, особенно при недостаточной подготовке, подобные нагрузки приводят к резким расстройствам жизнедеятельности.

По первоначальным представлениям Р. Маргария (1969), израсходованный во время выполнения тренировочной нагрузки гликоген ресинтезируется из молочной кислоты на протяжении 1-2 ч после тренировки. Расходуемый в этот период восстановления кислород определяет вторую (медленную, или лактатную) фракцию кислородного долга. Однако в настоящее время установлено, что восстановление гликогена в мышцах может длиться до 2-3 дней.

В период восстановления происходит устранение кислоты из рабочих мышц, крови и тканевой жидкости. Если после такой нагрузки выполняется лёгкая работа (активное восстановление), то устранение молочной кислоты происходит значительно быстрее (Коц Я.М., 1986).

Наибольшая интенсивность восстановительных процессов наблюдается сразу по окончании работы, а затем она постепенно понижается. Логично предположить, что применить средства, способствующие ускорению восстановительных процессов, целесообразнее в тот момент, когда скорость их естественного протекания замедляется.

По мнению В. М. Дьячкова (1977), на протекание восстановительных процессов оказывают положительное влияние упражнения умеренной интенсивности с ритмическим чередованием напряжения и расслабления мышц: медленный бег по мягкому грунту, непродолжительное плавание в тёплой воде, упражнения малой интенсивности игрового характера.

Быстрота восстановительных процессов, чувствительность к некоторым средствам восстановления связана с индивидуальными особенностями организма спортсмена. Так, известны индивидуальные различия и способности к восстановлению при одинаковом уровне тренированности. Некоторые спортсмены даже в состоянии хорошей тренированности относительно медленно восстанавливаются (Гиппенрейтер Б.С., 1966; Аванесов В.У, Талышев Ф.М., 1974; Волков В.М., 1977; Буровых А.Н., 1982; Моногаров В.Д., 1986, и др.).

Говоря о восстановлении после тренировочных нагрузок, нельзя не отметить его связь со спецификой мышечной деятельности. Различные виды спорта, в том числе лёгкой атлетики (а их свыше 40) оказывают неодинаковое влияние на энергообмен, деятельность отдельных органов и систем, различные звенья двигательного аппарата, характер регуляции взаимодействия функций. Поэтому при оценке последействия тренировочных занятий важно избирательно проанализировать следовые изменения в зависимости от вида спорта, характера тренировочного занятия и т.д.


1 | 2 | 3 | 4 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)