АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Наблюдение и измерение цифровых изображений. Как уже отмечалось выше, цифровое изображение хранится в памяти компьютера, в общем случае, в виде прямоугольной матрицы

Читайте также:
  1. III. Выявление, регистрация, учет больных полиомиелитом, острыми вялыми параличами, статистическое наблюдение
  2. III. ИЗМЕРЕНИЕ ИНФОРМАЦИИ
  3. III. ПЕРВИЧНОЕ ИЗМЕРЕНИЕ СОЦИАЛЬНЫХ ХАРАКТЕРИСТИК
  4. YIII.3.1.Научное наблюдение
  5. YIII.3.3.Измерение
  6. А. Самонаблюдение без помощи инструментов
  7. Альфред Бине (1857 – 1911)- тестология интеллекта – измерение умственных способностей человека
  8. Анализ и интерпретация изображений
  9. Безработица – сущность и измерение
  10. Безработица: понятие, измерение, виды и последствия.
  11. Безработица: сущность, типы. Измерение уровня безработицы. Экономические и социальные последствия.
  12. В. Измерение неравенства доходов

 

Как уже отмечалось выше, цифровое изображение хранится в памяти компьютера, в общем случае, в виде прямоугольной матрицы, элементы которой несут информацию об оптических плотностях или цвете элементарных участков изображения, а номера i строки и j столбца элемента определяют его положение в матрице. Нумерация строк и столбцов матрицы цифрового изображения начинается с нуля.

Рис.1.1

Различают две прямоугольных системы координат цифрового изображения: левую оC xC уC (рис.1.1a), началом которой является левый верхний угол цифрового изображения и правую - оC xC уC (рис.1.1b), началом которой является пиксель, расположенный в левом нижнем углу цифрового изображения. Ось x совпадает с соответствующей строкой, а ось y – со столбцом матрицы цифрового изображения.

Левая система координат принята при записи изображений в файл во всех форматах и используется в большинстве программ по обработке изображений. В фотограмметрии традиционно применяется правая система координат для анализа снимка, и многие современные цифровые фотограмметрические системы используют именно эту систему координат. Поэтому в дальнейшем будем использовать в качестве системы координат цифрового изображения правую прямоугольную систему координат оC xC уC (рис.1.1b). В этой системе координат координаты любой точки определяются в, так называемых, пиксельных координатах (единицей измерения в этом случае является пиксель).

Пиксельные координаты центров пикселей в системе координат цифрового изображения оC хC уC определяют по формулам:

. (1.1)

Для измерения координат точек цифрового изображения его визуализируют на экране дисплея. Если пиксель изображения на экране дисплея соответствует пикселю исходного цифрового изображения, то с помощью “мыши” или клавиатуры компьютера можно навести измерительную марку, формируемую в виде цифрового изображения на экране дисплея, на точку изображения с точностью до одного пикселя.

Для получения подпиксельной (субпиксельной) точности можно увеличить матрицу изображения на экране монитора относительно исходного цифрового изображения. В этом случае каждый пиксель исходного изображения будет изображаться матрицей n×n пикселей, численное значение всех элементов a'ij которой будут равны численному значению элемента матрицы исходного изображения.

Пиксельные координаты точек увеличенного изображения можно измерить с точностью до 1/n пикселя исходного изображения (рис.1.2.).

Рис. 1.2

Пиксельные координаты (в пикселях исходного изображения) элемента a'ij увеличенного изображения определяют по формуле:

, (1.2)

в которых: i,j - номера строки и столбца элемента матрицы исходного изображения, в котором находится элемент a'ij увеличенного изображения:

i’,j’ - номера строки и столбца элемента a`ij подматрицы n×n;

n – коэффициент увеличения изображения.

Например, для элемента a’23 (рис.1.2) пиксельные координаты:

Значения физических координат центров пикселей цифрового изображения можно определить по значениям их пиксельных координат, если известны физические размеры стороны пикселя изображения Δ (предполагается, что пиксель имеет форму квадрата).

Значения физических координат определяют по формулам:

. (1.3)

Например, координаты центра пикселя, соответствующего элементу a’23 (рис.1.2) при величине Δ=20 мкм будут равны хc = 34 мкм и yc = 50 мкм.

В некоторых цифровых системах начало системы координат цифрового изображения оc хc уc выбирают в центре пикселя, расположенного в нижнем левом углу цифрового изображения (рис.1.3).

Рис.1.3

В этом случае значения пиксельных координат вычисляют по формулам:

, (1.4)

при измерениях с точностью до пикселя и по формулам:

, (1.5)

при измерениях с подпиксельной точностью.

Например, для того же элемента a’23 (рис.1.3) пиксельные координаты равны:

Рассмотренный выше метод измерения цифрового изображения с подпиксельной точностью требует его увеличения на экране дисплея компьютера. Однако, даже при увеличении цифрового изображения только в два раза, на экране дисплея исходный аналоговый снимок изображается с весьма значительным оптическим увеличением. Так, например, снимок, преобразованный на сканере, с размером пикселя 14 мкм на экране дисплея с размером зерна 0.28 мм при увеличении цифрового изображения снимка в 2 раза имеет оптическое увеличение 40 раз. Такое увеличение приводит к значительному ухудшению изобразительных свойств наблюдаемого изображения и, как следствие, к снижению точности наведения измерительной марки на измеряемые объекты на изображении.

С целью обеспечения возможности измерения координат точек цифрового изображения с подпиксельной точностью без увеличения исходного изображения разработан метод измерения цифровых изображений, в котором цифровое изображение снимка может смещаться относительно неподвижной измерительной марки с шагом в n – раз меньшим размера пикселя.

Принцип измерения координат точек цифрового изображения по этому методу иллюстрируется на рис.1.4.

Рис. 1.4

 

На рис.1.4а представлен фрагмент исходного цифрового изображения с измерительной маркой (в виде креста) и точкой изображения m, координаты которой необходимо измерить. Как следует из этого рисунка, центр изображения измерительной марки не совпадает с изображением точки m, причем разности значений их пиксельных координат составляют величины DxP и DyP.

Для совмещения центра изображения измерительной марки с точкой m можно создать фрагмент цифрового изображения снимка, в котором координаты начала системы координат o’с x’с yс будут иметь значения , а .

Создание такого фрагмента цифрового изображения производится следующим образом. По координатам центра каждого пикселя фрагмента изображения x’pi, y’pi определяют значения координат его проекции xpi, ypi в системе координат ос хс ус исходного изображения.

Их значения определяют по формулам:

. (1.6)

Затем по значениям координат xpi, ypi находят ближайшие к изображению точки i, соответствующей центру пикселя

Рис. 1.5

создаваемого фрагмента цифрового изображения, четыре пикселя исходного цифрового изображения, например, M, K, L, N (рис.1.5)

Далее методом билинейного интерполирования определяют значения оптической плотности i -го пикселя создаваемого фрагмента изображения по формуле:

, (1.7)

в которой

.

Таким же образом формируются все элементы (пиксели) создаваемого фрагмента цифрового изображения.

На экране дисплея, на визуализированном фрагменте созданного цифрового изображения центр измерительной марки будет совмещен с изображением точки m. Пиксельные координаты точки m изображения в системе координат исходного изображения определяются по формулам 1.6.

Необходимо отметить, что создание фрагмента цифрового изображения требует значительных вычислительных процедур. Поэтому для достижения эффекта перемещения изображения на экране дисплея относительно марки в “реальном масштабе” времени фрагмент изображения не должен иметь большие размеры.

В случае если для измерений используются цветные цифровые изображения при формировании элементов создаваемого изображения методом билинейного трансформирования по формулам (1.7) определяются интенсивности красного (R), зеленого (G) и синего (В) компонентов цветного изображения.


1 | 2 | 3 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)