АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Аэробные микроорганизмы

Читайте также:
  1. XIII. факультативно анаэробные ГРАМОТРИЦАТЕЛЬНЫЕ НЕСПОРООБРАЗУЮЩИЕ ПАЛОЧКИ
  2. XIII. факультативно анаэробные ГРАМОТРИЦАТЕЛЬНЫЕ НЕСПОРООБРАЗУЮЩИЕ ПАЛОЧКИ
  3. Анаэробные микроорганизмы
  4. Анаэробные процессы
  5. Анаэробные пути ресинтеза АТФ.
  6. Антибиотиков на микроорганизмы
  7. Аэробные процессы
  8. Аэробные упражнения
  9. Влияние биологических факторов на микроорганизмы
  10. Влияние пестицидов на почвенные микроорганизмы
  11. ВЛИЯНИЕ РЕКРЕАЦИОННОЙ И ПАСТБИЩНОЙ ДЕГРЕССИИ ПОЧВ НА МИКРООРГАНИЗМЫ

Многие аэробные микроорганизмы, к которым относят грибы, некоторые дрожжи и многие бактерии, подобно высшим организмам (растениям, животным), окисляют органические вещества полностью до минеральных веществ – углекислого газа и воды. Процесс этот называется дыханием.

В качестве энергетического материала в процессе дыхания микроорганизмы часто используют углеводы. При этом сложные (ди-, три- и полисахариды) ферментативным путем гидролизу-ются до моносахаров, которые и подвергаются окислению.

Этот процесс в общем виде может быть представлен следующим уравнением:

 

Как видно из уравнения, при полном окислении глюкозы освобождается вся потенциальная (свободная) энергия молекулы глюкозы.

Приведенное уравнение характеризует процесс в суммарном виде, показаны лишь исходный и конечные продукты окисления.

Однако процесс этот многоэтапный и протекает при участии многих ферментов с образованием различных промежуточных продуктов. Обязательным промежуточным продуктом в процессе биологического окисления глюкозы является пировиноградная кислота.

Известно несколько путей расщепления глюкозы до этого важнейшего промежуточного продукта. Одним из таких путей является распад глюкозы, называемый гликолитическим. Он довольно универсален и свойствен многим аэробным и анаэробным микроорганизмам (рис. 20).

1. Первым этапом является активирование глюкозы путем φ о с φ ο ρ и -лирования при участии АТФ и фермента фосфотрансферазы (гексоки-назы). К молекуле глюкозы от молекулы аденозинтрифосфорной кислоты (АТФ) присоединяется концевой фосфатный остаток, обладающий макроэргической (со) связью. Образуется глюкозо-6-фосфат, а АТФ превращается в аденозиндифосфорную кислоту (АДФ).

2. Глюкозо-6-фосфат путем изомеризации при участии фермента глюкозофосфатизомеразы переходит во фруктозо-6-фосфат.

3. Фруктозо-6-фосфат затем фосфорилируется за счет АТФ при участии соответствующей фосфотрансферазы (фосфофруктокиназы). Образуется фруктозо-1,6-дифосфат, а АТФ превращается в АДФ. Вторичное фос-форилирование молекулы гексозы приводит к ее дальнейшему активированию.

4. Фруктозо-1,6-дифосфат расщепляется при участии фермента альдо-лазы на две молекулы фосфотриоз. Одна из них — фосфодиоксиацетон, другая — фосфат глицеринового альдегида. Оба эти вещества легко могут превращаться друг в друга.

Дальнейшему превращению подвергаются две молекулы 3-фосфоглицери-нового альдегида, так как фосфат диоксиацетона под действием фермента триозофосфатизомеразы превращается в 3-фосфоглицериновый альдегид.

5. Следующим этапом является окисление 3-фосфоглицеринового альдегида. Эта реакция катализируется дегидрогеназой, коферментом которой является НАД (см. с. 53). В окислении участвует фосфорная кислота.

Молекула 3-фосфоглицеринового альдегида присоединяет фосфат, а водород переносится на кофермент НАД, который восстанавливается в НАД·Н2. Освобождающаяся при окислении фосфоглицеринового альдегида энергия сосредоточивается в, макроэргической связи (∞) образующейся 1,3-дифосфоглицериновой кислоты.

6. В дальнейшем фосфатная группа 1,3-дифосфоглицериновой кислоты, имеющая макроэргическую связь, при участии фермента фосфоглицератки-назы переносится на молекулу аденозиндифосфорной кислоты. Образуется 3-фосфоглицериновая кислота, а АДФ превращается в АТФ. Таким образом свободная энергия окисления альдегидной группы запасается в молекуле

7. З-Фосфоглицериновая кислота под влиянием фермента фосфоглицеромутазы превращается в 2-фосфоглицериновую кислоту.

8. Под действием фермента энолазы 2-фосфоглицериновая кислота, теряя воду, переходит в энольную форму фвсфопировиноградной кислоты. При этом происходит перераспределение внутримолекулярной энергии, большая часть которой сосредоточивается в форме макроэргической фосфатной связи фосфоэнолпировиноградной кислоты.

В процессе дыхания аэробных микроорганизмов пировино-градная кислота в дальнейшем подвергается полному окислению до СO2 и Н2O, вступая в сложный цикл превращений (цикл Кребса) с образованием три- и дикарбоновых кислот, последовательно окисляющихся (отщепляется Н2) и декарбоксилирую-щихся (отщепляется СO2).

Из рис. 21 видно, что окисление одной молекулы пировино-градной кислоты сопровождается выделением трех молекул углекислого газа и пяти пар водородных атомов.

Водород, отщепленный от окисляемых в цикле Кребса кислот, посредством коферментов (НАД и НАДФ) соответствующих дегидрогеназ передается по так называемой «дыхательной цепи», состоящей из комплекса ферментов, к конечному акцептору – молекулярному кислороду.

Из приведенной ниже схемы (с. 69) видно, что водород восстановленного НАД · 2Н передается на кофермент (ФАД) фла-винового фермента, который восстанавливается в ФАД · 2Н. С восстановленной флавиновой дегидрогеназы водород передается на цитохром цитохромной системы, при этом атом водорода расщепляется на ион водорода (Н+) и электрон (е~), Цитохром из окисленной формы превращается в восстановленную. Восстановленный цитохром передает электроны следующему ци-тохрому и т. д.

Цитохромы попеременно то восстанавливаются, то окисляются, что связано с изменением валентности железа, содержащегося в их простетической группе. Последний цитохром передает электроны цитохромоксидазе, восстанавливая ее кофер-. мент. Завершающей реакцией является окисление восстановленной цитохромоксидазы молекулой кислорода. Кислород за счет передачи ему (с цитохромоксидазы) электронов активируется и приобретает способность соединяться с ионами водорода (Н+), в результате чего образуется вода. На этом и заканчивается у аэробов полное окисление исходного органического вещества.

9. Фосфоэнолпировиноградная кислота дефосфорилируется. При этом богатая энергией фосфатная группа при участии фермента пируваткиназы передается на молекулу АДФ. В результате образуется пировиноградная кислота, а АДФ превращается в АТФ.

Из изложенного и рис. 20 видно, что гликолитическое расщепление глюкозы до пировиноградной кислоты происходит без участия кислорода (анаэробная стадия) и заканчивается выходом двух молекул пировиноградной кислоты, двух молекул НАД · Н2 и двух молекул АТФ. Синтезируются четыре молекулы АТФ, но две расходуются на фосфорилирование новой молекулы глюкозы.

Рис. 21. Цикл Кребса

Освобождающаяся при переносе электронов в дыхательной цепи энергия затрачивается на син

тез АТФ из АДФ и неорганического фосфата, т. е. запасается в форме энергии фосфатной связи АТФ. Этот процесс называется окислительным фосфорилированием.

Некоторые аэробные гетеротрофные микроорганизмы получают энергию за счет неполного окисления органических веществ; при этом в среде накапливаются промежуточные недоокисленные продукты, преимущественно органические кислоты.

При неполном окислении энергетического материала высвобождается соответственно меньшее количество энергии. Часть потенциальной энергии окисляемого вещества остается в продуктах неполного окисления. Например, некоторые плесневые грибы в определенных условиях окисляют сахар с образованием воды и различных органических кислот – глюконовой, лимонной, яблочной, щавелевой, янтарной и др. Уксуснокислые бактерии окисляют этиловый спирт до уксусной кислоты и воды:

Дальнейшее превращение образующихся пировиноградной кислоты и восстановленного промежуточного переносчика водорода НАД · Н2 у анаэробов иное, чем у аэробов. Пировиноград-ная кислота в бродильных процессах является исходным материалом для разнообразных продуктов брожения (спиртов, органических кислот).

У одних анаэробов она непосредственно служит конечным акцептором водорода от НАД · Н2 и восстанавливается в продукт брожения – молочную кислоту; НАД · Н2 при этом окисляется в НАД.

У других анаэробов из пировиноградной кислоты образуются различные промежуточные продукты, которые служат затем акцепторами водорода от НАД · Н2. Последний регенерируется, а акцептировавшие водород восстановленные органические соединения, являющиеся конечными продуктами брожения, выделяются в окружающую среду. В зависимости от того, какой основной продукт накапливается в среде, процесс брожения имеет соответствующее название.

Примерами такого типа получения энергии могут служить следующие виды брожения.

Спиртовое брожение осуществляется многими дрожжами в анаэробных условиях. Молекула глюкозы (энергетический материал) в этом процессе превращается в две молекулы этилового спирта и две молекулы углекислого газа с выделением энергии:

В молекуле спирта заключено энергии 1,37-106 Дж. Как видно из уравнения, освобождается только часть энергии, много ее остается в уксусной кислоте.

Некоторые из этих окислительных процессов используют в промышленности, например, при производстве уксуса, лимонной и глюконовой кислот. Условия, химизм и возбудители этих процессов описаны в гл. 4.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)