АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Общая характеристика. Бактерии – это обширная группа микроорганизмов (около 1600 видов), большинство из которых одноклеточные

Читайте также:
  1. Data Mining и Business Intelligence. Многомерные представления Data Mining. Data Mining: общая классификация. Функциональные возможности Data Mining.
  2. I. 1.2. Общая постановка задачи линейного программирования
  3. I. Общая установка сознания
  4. I. Общая характеристика механизма
  5. I. Общая характеристика механизма
  6. I. Общая характеристика.
  7. I. Пограничное состояние у новорожденных детей. Определение, характеристика, тактика медицинского работника.
  8. II. 1.1. Общая постановка задачи
  9. II. Исследование пульса, его характеристика. Места определения пульса.
  10. II. Характеристика компонентов
  11. III.2. Преступление: общая характеристика
  12. IS-LM как теория совокупного спроса. Сравнительная характеристика монетарной и фискальной политики в закрытой экономике.

Бактерии – это обширная группа микроорганизмов (около 1600 видов), большинство из которых одноклеточные.

Форма и размеры бактерий. Основными формами бактерий являются шаровидная, палочковидная и извитая (рис. 2).

Шаровидные бактерии (рис. 2, а) – кокки – имеют обычно форму шара, встречаются уплощенные, слабо овальной или бобовидной формы. Кокки могут быть в виде одиночных клеток–микрококки или соединенных в различных сочетаниях: попарно – диплококки, по четыре клетки – те-тракокки, в виде более или менее длинных цепочек – стрептококки, а также в виде скоплений кубической формы (в виде пакетов) из восьми клеток, расположенных в два яруса один над другим,– сардины. Встречаются скопления неправильной формы, напоминающие грозди винограда,– стафилококки.

Палочковидные бактерии (рис. 2, б) могут быть одиночными или соединенными попарно – диплобактерии, цепочками по три-четыре и более клеток – стрептобактерии. Соотношения между длиной и толщиной палочек бывают самыми различными.

Извитые или изогнутые бактерии (рис. 2, в) различаются по длине, толщине и степени изогнутости. Палочки, слегка изогнутые в виде запятой, называют вибрионами, палочки с одним или несколькими завитками в виде штопора – спириллами, а тонкие палочки с многочисленными завитками – спирохетами.

Рис. 1. Схема пяти царств живого мира:

1 – прокариоты (царство Моnега); 2– одноклеточные эукариоты (царство Protista); 3– многоклеточные эукариоты (а –царства Plantae; б – Fungi; вAni- malia)

Использование электронного микроскопа для изучения микроорганизмов в естественных субстратах позволило открыть много новых бактерий, имеющих особую форму клеток (рис. 2,г): замкнутого или разомкнутого кольца (тороиды), клетки с выростами (простеками), клетки червеобразной формы – длинные с загнутыми очень тонкими концами, обнаружены клетки в виде шестиугольной звезды, клетки с выростами (простеками).

Размеры бактерий очень малы: от десятых долей микрометра1 (мкм) до нескольких микрометров. В среднем диаметр тела большинства бактерий 0,5–1 мкм, а средняя длина палочковидных бактерий 2–5 мкм. Встречаются бактерии, размеры которых значительно превышают среднюю величину. Существуют и такие, величина которых находится на грани видимости в обычные оптические микроскопы (0,1 –0,2 мкм). Например, длина клетки спирохеты может достигать 500 мкм, а самые мелкие из известных бактерий – микоплазмы – имеют клетки длиной 0,15–0,2 мкм.

Форма тела бактерий, как и их размеры, может меняться под влиянием условий роста. Однако при определенных, относительно стабильных условиях бактерии сохраняют присущие данному виду размеры и форму, приобретенные ими в процессе эволюции. Масса бактериальной клетки очень мала, приблизительно 4 · 10-13 г.

Строение бактериальной клетки. Клетка прокариотных организмов, к которым относят бактерии, обладает принципиальными особенностями ультраструктуры. На рис. 3 представлена схема строения бактериальной клетки.

Клеточная стенка (оболочка) – важный и обязательный структурный элемент большинства бактерий (рис. 3, 2). На долю клеточной стенки приходится от 5 до 20 % сухих веществ клетки. Она служит механическим барьером между протопластом и окружающей средой, придает клетке определенную форму. В состав клеточной стенки входит специфическое для прокариотных клеток полимерное соединение – пептидогликан (муреин, или мукопептид), отсутствующий в клеточных стенках эукариотных организмов.

По методу окраски, предложенному Грамом, бактерии делят на две группы: грамположительные и грамотрицательные. Грамположительные клетки удерживают краску, а грамотрицательные клетки не удерживают. Установлено, что это обусловлено различиями в химическом составе и ультраструктуре их клеточных стенок. У грамположительных бактерий клеточные стенки более толстые, аморфные, в них содержится большое количество муреина (80–90 % сухой массы) и тейхоевые кислоты. Клеточные стенки грамотрицательных бактерий более тонкие, слоистые, в них содержится много липидов, мало муреина (5–10 %) и отсутствуют тейхоевые кислоты.

1 Микрометр (мкм) равен 0,001 мм.

Рис. 2. Формы бактерий:

а – шаровидные: / – микрококки; 2 – стрептококки; 3 – диплококки и тетракокки; 4 – стафилококки; 5 – сарцины; б – палочковидные: 6 – палочки без спор; 7 – палочки со спорами; в – извитые: 8 – вибрионы; 9 – спириллы; 10 – спирохеты; г – новые формы: // – тороиды; 12 – бактерии, образующие простеки; 13 – бактерии червеобразной формы; 14 – бактерии в форме шестиугольной звезды

 

Рис. 3. Схема строения бактериальной клетки:

1 – капсула; 2 – клеточная стенка; 3 – цитоплазматическая мембрана; 4 – цитоплазма; 5 – мезосомы; 6 – рибосомы; 7 – нуклеоид; 8 – внутрицитоплазматические мембранные образования; 9 – жировые капли; 10 – полисахаридные гранулы; 11 – гранулы полифосфата; 12 – включения серы; 13 – жгутики; 14 – базальное тельце

Клеточная стенка бактерий часто бывает покрыта слизью. Слизистый слой может быть тонким, едва различимым, но может быть и значительным, образующим капсулу (рис. 3.1.). Нередко размер капсулы намного превышает величину бактериальной клетки. Ослизнение клеточных стенок иногда бывает настолько сильным, что капсулы отдельных клеток сливаются в слизистые массы, в которые вкраплены бактериальные клетки (зооглеи). Образуемые некоторыми бактериями слизистые вещества не удерживаются в виде компактной массы вокруг клеточной стенки, а диффундируют в окружающую среду.

При быстром размножении в жидких субстратах слизеобразующие бактерии могут превратить их в сплошную слизистую массу. Такое явление наблюдается иногда при производстве сахара в сахаристых экстрактах из свеклы. Возбудителем этого процесса является бактерия лейконосток (Leuconostoc mesen-teroides). За короткое время сахарный сироп может превратиться в тягучую слизистую массу. Ослизнению подвергаются мясо, колбасы, творог; наблюдается тягучесть молока, рассолов, квашеных овощей, пива, вина. Интенсивность слизеобразования и химический состав слизи зависят от штамма бактерий и условий культивирования.

Капсула обладает полезными свойствами: слизь предохраняет клетки от неблагоприятных условий; у многих бактерий в неблагоприятных условиях усиливается слизеобразование. Капсула защищает клетку от механических повреждений и высыхания, создает дополнительный осмотический барьер, служит препятствием для проникновения фагов. Иногда она является источником запасных питательных веществ.

Цитоплазматическая мембрана отделяет от клеточной стенки содержимое клетки. Это обязательная структура любой клетки. Нарушение целостности цитоплазматической мембраны приводит к потере клеткой жизнеспособности. На долю цитоплазматической мембраны приходится 8–15% сухого вещества клетки, толщина ее 7–10 нм '.На срезах клеток в электронном микроскопе она видна в виде трехслойной структуры – одного липидного слоя и двух примыкающих к нему с обеих сторон белковых слоев.

В цитоплазматической мембране (рис. 3, 3) находятся различные ферменты, она полупроницаема, выполняет важную роль в обмене веществ между клеткой и окружающей средой, являясь главным осмотическим барьером клетки (см. с. 60).

Цитоплазма бактериальной. клетки представляет собой полужидкую, вязкую, коллоидную систему (рис. 3, 4). Цитоплазма неоднородна; исследования показали, что местами она пронизана мембранными структурами – мезосомами, которые произошли от цитоплазматической мембраны и сохранили с ней связь.

Мезосомы (рис. 3, 5) выполняют различные функции, в них и в связанной с ними цитоплазматической мембране расположены ферменты, участвующие в энергетических процессах – в снабжении клетки энергией.

1 Нанометр (нм) равен 0,001 микрометра.

Хорошо развитые мезосомы обнаружены только у грамположительных бактерий, у грамотрицательных они развиты слабо и имеют более простое строение.

В цитоплазме содержатся рибосомы, ядерный аппарат и различные включения.

Рибосомы рассеяны в цитоплазме в виде мелких гранул размером 20–30 нм; рибосомы состоят примерно наполовину из РНК и белка. Рибосомы ответственны за синтез белка клетки. В бактериальной клетке их может быть 5–50 тыс. (рис. 3, 6).

Строение ядерного аппарата прокариотных микроорганизмов многие годы было предметом многочисленных дискуссий. В настоящее время установлено, что генетический материал прокариотных микроорганизмов, так же как и у эукари-отных, представлен молекулами ДНК- У прокариотов ДНК представляет собой компактное образование, которое занимает определенное место в цитоплазме, но не отграничено от нее мембраной, как у эукариотных клеток. Ядерное образование бактериальной клетки называется нуклеоидом (рис. 3, 7) в отличие от названия «я д ρ о» у эукариотной клетки.

При электронно-микроскопическом исследовании установлено, что нуклеоид бактериальной клетки представлен одной двойной спиралью ДНК в виде замкнутого кольца длиной около 1,4 мм, т. е. более чем в 1000 раз превышает длину клетки. ДНК нуклеоида бактерий называют еще бактериальной хромосомой.

Цитопл азмэтические включения бактериальной клетки разнообразны, в основном – это запасные питательные вещества, которые откладываются в клетке, когда они развиваются в условиях избытка питательных веществ в среде, и потребляются, когда клетки попадают в условия голодания. В клетках бактерий откладываются гликоген, крахмалоподобное вещество – гранулеза, которые используются в качестве источника углерода и энергии. Липиды находятся в клетках в виде гранул и капелек. Жир служит хорошим источником углерода и энергии. У многих бактерий накапливаются полифосфаты (соединения с макроэргическими связями); они содержатся в волютиновых гранулах и используются клетками как источник фосфора и энергии. В клетках серных бактерий откладывается молекулярная сера.

Подвижность бактерий. Шаровидные бактерии, как правило, неподвижны. Палочковидные бактерии бывают как подвижными, так и неподвижными. Изогнутые и спиралевидные бактерии подвижны. Движение бактерий осуществляется с помощью жгутиков. Жгутики – это тонкие, спирально закрученные нити белковой природы, которые могут осуществлять вращательные движения. Длина жгутиков различна, а толщина так мала (10– 20 нм), что в световой микроскоп их можно увидеть только после специальной обработки клетки. Наличие жгутиков, их расположение являются постоянными для вида признаками и имеют диагностическое значение.

Жгутики располагаются на поверхности тела бактерий по одиночке – монотрихиальное жгутикование или пучком на одном или обоих концах клетки – лофотрихиальное жгутикование; они могут находиться на всей поверхности клетки – перитрихиальное жгутикование (рис. 4). Скорость передвижения велика: за секунду клетка со жгутиками может пройти расстояние в 20–50 раз больше, чем длина ее тела.

При неблагоприятных условиях жизни, при старении клетки, при механическом воздействии подвижность может быть утрачена.

Размножение бактерий. Для прокариотных клеток характерно простое деление клетки на две части. Деление клетки начинается, как правило, спустя некоторое время после деления нуклеоида. Характерной особенностью размножения бактерий является быстрота протекания процесса. Скорость деления зависит от вида бактерий и условий культивирования: некоторые виды делятся через каждые 15–20 мин, другие – через 5–10 ч. При таком быстром делении число клеток бактерий за сутки достигает огромного количества. Это часто наблюдается на пищевых продуктах: быстрое скисание молока за счет развития молочнокислых бактерий, быстрая порча мяса и рыбы за счет развития гнилостных бактерий и т. д.

Спорообразование. Споры у бактерий образуются обычно при неблагоприятных условиях развития: при недостатке питательных веществ, изменении температуры, рН, при накоплении продуктов обмена выше определенного уровня. Способностью образовывать споры обладают почти исключительно палочковидные бактерии. В каждой бактериальной клетке образуется' только одна спора (эндоспора).

Спорообразованию предшествует перестройка генетического аппарата клетки, изменяется морфология нуклеоида. В клетке прекращается синтез ДНК. Ядерная ДНК вытягивается в виде нити, затем концентрируется у одного из полюсов клетки. Эта часть клетки называется спорогенной зоной. Затем в спорогенной зоне происходит уплотнение цитоплазмы, этот участок обособляется от остального клеточного содержимого перегородкой (септой). Отсеченный участок покрывается мембраной материнской клетки, образуется так называемая проспора.

Проспора – это структура, располагающаяся внутри материнской клетки, от которой она отделена двумя мембранами: наружной и внутренней. Между мембранами формируется кортикальный слой (кортекс), сходный по химическому составу с клеточной стенкой вегетативной клетки. Помимо пептидогликана, в кортексе содержится дипиколиновая кислота (C7H8O4N), которая отсутствует в вегетативных клетках. Кортекс при прорастании споры превращается в клеточную стенку молодой вегетативной клетки. Поверх проспоры образуется оболочка споры, состоящая из нескольких слоев (рис. 5). Число, толщина и строение слоев различны у разных видов бактерий. Поверхность наружной оболочки может быть гладкой или с выростами разной длины и формы.

Споры имеют обычно круглую или овальную форму. Диаметр спор некоторых бактерий превышает ширину клетки, вследствие чего форма спороносящих клеток изменяется. Клетка приобретает форму веретена (клостридиум), если спора расположена в ее центре, или форму барабанной палочки (плектридиум), когда спора находится на конце клетки.

После созревания споры материнская клетка отмирает, оболочка ее разрушается и спора высвобождается. Процесс образования споры происходит в течение нескольких часов.

Наличие у бактериальных спор плотной труднопроницаемой оболочки, малое содержание в них воды, а также наличие кальция и дипиколиновой кислоты обусловливают их большую устойчивость к внешним факторам среды. Споры могут находиться в жизнеспособном состоянии сотни и даже тысячи лет. Например, жизнеспособные споры были выделены из трупов мамонтов и египетских мумий, возраст которых исчисляется тысячелетиями. Споры устойчивы к высокой температуре: в сухом состоянии они погибают после прогревания при 165–170 °С в течение 1,5–2 ч, а при перегретом паре (в автоклаве) – при 121 °С в течение 15–30 мин.

 

 

Рис. 4. Жгутики бактерий

 

Рис. 5. Схема строения зрелой бактериальной споры:

1 – экзоспориум; 2 – наружная оболочка споры; 3 – внутренняя оболочка споры; 4 – кортекс; 5 – клеточная стенка зародыша; 6 – цитоплазматическая мембрана; 7 – цитоплазма с ядерным веществом

 

В благоприятных условиях спора прорастает в вегетативную клетку; этот процесс обычно длится несколько часов. Прорастающая спора начинает активно поглощать воду, активируются ее ферменты, усиливаются биохимические процессы, приводящие к росту. Внешняя оболочка споры разрывается, через разрывы выходит наружу молодая бактериальная клетка.

Порчу пищевых продуктов вызывают лишь вегетативные клетки бактерий. Знание факторов, способствующих образованию спор у бактерий, и факторов, которые вызывают их прорастание в вегетативные клетки, имеет большое значение в выборе способа обработки продуктов для предотвращения их микробной порчи.

Изложенные сведения в основном относятся к так называемым истинным бактериям. Есть и другие, более или менее отличающиеся от них (нитчатые, стебельковые, миксобактерии, ак-тиномицеты, риккетсии, микоплазмы). Краткая характеристика их приведена ниже (см. «Систематика бактерий», с. 19–21).


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.)