|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
II. 1.1. Общая постановка задачи
Транспортные задачи составляют особый класс задач линейного программирования, специфика математических моделей которых позволяет применять для их решения наряду с общими методами решения задач ЛП специальные методы, значительно сокращающие процесс вычислений. Простейшая постановка транспортной задачи (Т-задачи) по критерию стоимости следующая. В пунктах производства имеются запасы какого-то продукта в количествах единиц соответственно. Необходимость в этом продукте в пунктах потребления выражается соответственно величинами Из каждого пункта производства возможна транспортировка продукта в любой пункт потребления. Транспортные издержки на перевозку единицы продукции (груза) из пункта и заданы и составляют так называемую матрицу издержек.
Условие Т-задачи представим в виде:
Здесь Для составления математической модели задачи, введем переменные , обозначающие количество груза, перевозимого из го пункта производства в й пункт потребления. Требуется найти множество переменных минимизирующих функцию
и удовлетворяющих условиям
Т-задача представляет собой задачу ЛП с числом переменных и числом ограничений типа равенств . Набор переменных удовлетворяющий условиям Т-задачи, можно записать в виде матрицы
.
Матрицу называют планом перевозки Т-задачи, а переменные называют собственно перевозками. План, при котором значение целевой функции минимально (и его уже сделать меньшим нельзя в области ограничений Т-задачи) называется оптимальным. Матрица матрица издержек. В ограничениях Т-задачи первое условие гарантирует полный вывоз продукта из всех пунктов производства, второе условие означает полное удовлетворение спроса на этот продукт в пунктах потребления. На практике же встречаются как задачи, где выполняется равенство между суммарными ресурсами и суммарными потребностями (условие баланса)
так и задачи, где эти условия не выполнены. В исходной постановке, где выполнено условие баланса, задача называется закрытой моделью. В противном случае – модель открыта и тогда ее необходимо “ закрыть ”. Если
,
вводится дополнительный пункт потребления, в котором потребности
если же
то вводится дополнительный пункт производства. В таблице издержек стоимости перевозок по соответствующим маршрутам равны нулю, так как введенные пункты фактически являются фиктивными и в перевозках они не участвуют.
Существуют различные подходы в решении Т-задачи. В частности к ручным методам вычисления оптимального плана относятся распределительный метод и методпотенциалов. Т-задачи можно решать и с использованием вычислительной техники с помощью методов дифференциальных рент и так называемого Венгерского метода.
II. 1.2. Метод определения начального опорного плана перевозок
Как и в других задачах ЛП, итерационный процесс отыскания оптимального плана транспортной задачи начинается с какого-либо опорного плана. Опорный план Т-задачи строим в виде матрицы размеров Заполненные позиции матрицы, то есть, в которых , соответствуют базисным переменным. Для невырожденного опорного плана их количество равно где ранг[9] матрицы системы ограничений. Начальный опорный план может быть построен, например, методом северо-западного угла [10]. Определим элементы матрицы начиная с верхнего левого угла. Находим величину Если , то , и первый столбец закрыт для расчета остальных элементов, то есть . Если , то , и первый столбец закрыт для расчета остальных элементов, то есть . Затем вычисляем
при , либо при .
Этот процесс продолжается до тех пор, пока на каком-то этапе не исчерпаются ресурсы и не удовлетворятся потребности .
Существуют и другие методы определения начального плана перевозок.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |