|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
I.2. Структура оптимизационных задач
Здесь важно отметить, что оптимизационные задачи имеют весьма разнообразные области приложений. Однако, несмотря на это, в целом, их формальное описание имеет общую схему.
Все эти задачи можно классифицировать как задачи поиска экстремума вещественной функции (здесь ), компоненты которой удовлетворяют системе уравнений:
(I. 2.1) набору неравенств: (I. 2.2)
а также ограничены сверху и снизу:
В дальнейшем, функцию будем называть целевой функцией, уравнения (1.2.1) – ограничениями типа равенств, неравенства (1.2.2) – ограничениями типа неравенств. Здесь предполагается, что используемые в задаче функциональные зависимости вещественнозначны, а число ограничений конечно. В общем виде формализованная постановка задачи выглядит так:
(I. 2.3)
Задача носит название задачи условной оптимизации.
Все такие задачи можно классифицировать в соответствии с видом функций и , а также с размерностью вектора . Если ограничения (I. 2.1) и (I. 2.2) отсутствуют, а представляет собой одномерный вектор, то мы имеем дело с задачами безусловной оптимизации – хотя и простейший, но весьма важный класс оптимизационных задач. Задачи условной оптимизации, в которых функции и являются линейными, носят название задач с линейными ограничениями. В таких задачах сама целевая функция может быть как линейной, так и нелинейной. Задачи, которые содержат только линейные функции вектора непрерывных переменных называются задачами линейного программирования (ЛП)[4]. Существует класс задач с линейными ограничениями и нелинейной целевой функцией. Оптимизационные задачи такого рода можно классифицировать на основе структурных особенностей нелинейных целевых функций: - квадратичная функция - задача квадратичного программирования; - отношение линейных функций – задачи дробно-линейного программирования; - в задачах динамического программирования целевая функция мультипликативна; и так далее.
Деление оптимизационных задач на такие классы представляет значительный интерес, поскольку специфические особенности тех или иных задач играют важную роль при разработке методов их решения.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |