АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

При генерации потенциала действия

Читайте также:
  1. I. ПРОБЛЕМЫ ВЗАИМОДЕЙСТВИЯ ПРИРОДЫ И ОБЩЕСТВА
  2. II. Пути противодействия психологическому воздействию противника.
  3. IV. Определите, какую задачу взаимодействия с практическим психологом поставил перед собой клиент.
  4. VI Обжалование решений, действий (бездействия) таможенных органов и их должностных лиц
  5. VI. По размеру предприятий (по мощности производственного потенциала)
  6. VI. Срок действия служебного контракта
  7. VII. По степени завершенности процесса воздействия на объекты защиты
  8. АВТОМАТИЧЕСКИЕ ВЕСОВЫЕ ДОЗАТОРЫ НЕПРЕРЫВНОГО ДЕЙСТВИЯ
  9. АВТОМАТИЧЕСКИЕ ВЕСОВЫЕ ДОЗАТОРЫ ПОРЦИОННОГО ДИСКРЕТНОГО ДЕЙСТВИЯ
  10. Аккультурация в межкультурных взаимодействиях
  11. Активность и степень воздействия на другие государственные орга-
  12. Активные действия

А – потенциал действия, Б – изменение возбудимости

Лабильность, или функциональная подвижность, измеряется в количестве потенциалов действия, которое может воспроизвести ткань за единицу времени при ритмическом раздражении. Она зависит от длительности ПД, а, следовательно, от периода абсолютной рефрактерности. Для нервной ткани она в среднем равна 1000 импульсам в секунду, для мышечной – 200-300 имп/c, а для нервно-мышечного синапса – 100-150 имп/c.

 

Возбудимые клетки как проводники электричества. Распространение электротонического потенциала. Константа длины. Механизм проведения возбуждения по немиелинизированным и миелинизированным нервным волокнам

Мембрана нейрона и его отростков (нервных волокон) обладает способностью не только генерировать потенциал действия, но и передавать го на относительно большие расстояния без уменьшения его амплитуды и расходования энергии, поэтому нервные импульсы распространяются без затухания (бездекрементно). Способность к распространению возбуждения связана с тем, что во время потенциала действия происходит изменение знака заряда в возбужденном участке мембраны (инверсия заряда). Между ним и невозбужденными соседними участками мембраны возникают локальные электрические токи, под действием которых происходит деполяризация новых соседних участков, что приводит к формированию в них потенциала действия. За счет последовательного охвата возбуждением все новых участков нервного волокна возбуждение перемещается вдоль дендритов и аксонов. Чем больше диаметр волокна, тем больше скорость распространения возбуждения.

Особенности проведения возбуждения в нервных волокнах определяются наличием или отсутствием у них оболочки. Нервные волокна делятся на миелиновые и безмиелиновые, то есть покрытые особой миелиновой оболочкой или не покрытые. Эта оболочка образуется на периферии шванновскими клетками, а в головном мозге – клетками олигодендроглии.

Механизм проведения импульса по нервным волокнам объясняется теорией “местных токов” Тасаки (рисунок 3 и рисунок 4). В безмиелиновом нервном волокне ПД генерируется каждой точкой поверхности мембраны – так называемое непрерывное проведение возбуждения. Во время пикового ПД на наружной поверхности волокна происходит перезарядка, в результате чего возникает местный ток от соседнего положительно заряженного участка к возбужденному, а внутри – наоборот. Таким образом образуется кольцевой ток.

В миелиновых волокнах слой миелина не целиком охватывает волокно, а имеет промежутки – перехваты Ранвье. Сам миелин обладает высоким сопротивлением электрическому току, поэтому в участках, покрытых миелином, потенциал действия генерироваться не может. Перехваты Ранвье располагаются примерно через каждые 0,5-1,5 мм (в зависимости от толщины оболочки), в них обнаружено очень много (около 12 тыс/мкм2) натриевых каналов, поэтому в миелиновых волокнах проведение возбуждения происходит скачкообразно (сальтаторно).

Между соседними участками возникает большой по величине ток (ПД = 100-120 мВ), который в 3-5 раз превышает порог раздражения и способен возбудить соседние участки, что составляет фактор надежности.

Скорость проведения возбуждения пропорциональна корню квадратному от диаметра волокна. Самые тонкие волокна безмиелиновые, а в миелиновых волокнах чем толще слой миелина, тем больше расстояние между перехватами Ранвье. В безмиелиновых волокнах местные кольцевые токи последовательно распространяются “маленькими шажочками” непрерывно, скорость проведения возбуждения в безмиелиновых волокнах гораздо ниже, чем в миелиновых. Такая передача импульса является медленной и неэкономичной в плане энергозатрат. Поэтому безмиелиновыми являются только самые тонкие волокна (менее 1 мкм в диаметре), проводящие возбуждение к медленно работающим органам – кишечнику, мочевому пузырю и др. Как правило, не миелинизируются волокна, проводящие информацию о боли и температуре.

Константа длины – это расстояние, на котором местный ток сохраняет пороговое значение, то есть способен вызывать образование ПД на следующем участке нервного волокна.

Рисунок 3 – Передача возбуждения в миелинизированном нервном волокне

Рисунок 4 – Передача возбуждения в немиелинизированном нервном волокне

Такая передача импульса является медленной и неэкономичной в плане.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)