|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
ОИРМ ЕОСЮ ВТАЬ ЛГОП
Число магических квадратов быстро возрастает с увеличением размера квадрата. Существует только один магический квадрат размером 3х3. Количество магических квадратов 4х4 - 880, а 5х5 - 250000. 4.2.5 Метод перестановок на основе маршрутов Гамильтона Этот метод реализуется путем выполнения следующих шагов. Шаг 1. Исходный текст разбивается на блоки. Если длина шифруемого текста не кратна длине блока, то на свободные места последнего блока помещаются служебные символы-заполнители (например,*) Шаг 2. Символами блока заполняется таблица, в которой для каждого порядкового номера символа в блоке отводится вполне определенное место (рисунок 4.10).
Рисунок 4.10 - Вариант 8-элементной таблицы и маршрутов Гамильтона
Шаг 3. Считывание символов из таблицы осуществляется по одному из маршрутов. Увеличение числа маршрутов повышает криптостойкость шифра. Маршруты выбирают либо последовательно, либо их очерёдность задаётся ключом К. Шаг 4. Зашифрованная последовательность символов разбивается на блоки фиксированной длины L. Величина L может отличаться от длины блоков, на которые разбивается исходный текст на шаге 1. Расшифрование производится в обратном порядке. Пример 5. Требуется зашифровать текст Решение. Воспользуемся вышеизложенной методикой построения шифра по шагам. Шаг 1. Исходный текст разбивается на 3 блока: Блок Блок
Шаг 2. Заполняется 3 матрицы с маршрутами 2,1,1 (рисунок 4.11).
Рисунок 4.11 - Шифрование с помощью маршрутов Гамильтона
Шаг 3. Получение шифртекста путём расстановки символов в соответствии с маршрутами.
Шаг 4. Разбиение на блоки шифртекста
Возможно применение и других маршрутов. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |