АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Вторичные, или приобретенные, иммунодефициты

Читайте также:
  1. Вторичные (приобретенные) иммунодефициты.
  2. Лекция «Иммунодефициты»
  3. Патология иммунного ответа может быть обусловлена гипофункцией (иммунодефициты) или гиперфункцией (реакции гиперчувствительности) иммунной системы.
  4. Первичные (врожденные) иммунодефициты.

Вторичные иммунодефициты в отличие от первичных развиваются у лиц с нормально функционировавшей от рождения иммунной системой. Они формируются под воздействи­ем окружающей среды на уровне фенотипа и обусловлены нарушением функции иммунной системы в результате различных заболеваний или неблагоприятных воздействий на орга­низм. При вторичных иммунодефицитах могут поражаться Т- и В-системы иммунитета, фак­торы неспецифической резистентности, воз­можны также их сочетания. Вторичные имму­нодефицита встречаются значительно чаще, чем первичные. Вторичные иммунодефицита, как правило, преходящи и поддаются иммунокоррекции, т. е. восстановлению нормальной деятельности иммунной системы.

Вторичные иммунодефицита могут быть: после перенесенных инфекций (особенно ви­русных) и инвазий (протозойные и гельминтозы); при ожоговой болезни; при уремии; при опухолях; при нарушении обмена веществ и истощении; при дисбиозах; при тяжелых травмах, обширных хирургических операци­ях, особенно выполняемых под общим нар­козом; при облучении, действии химических веществ; при старении, а также медикамен­тозные, связанные с приемом лекарств.

По времени возникновения выделяют ан­тенатальные (например, ненаследственные формы синдрома ДиДжорджи), перинаталь­ные (например, нейтропения новорожденного, вызванная изосенсибилизацией матери к антигенам нейтрофилов плода) и постнатальные вторичные иммунодефицита.

По клиническому течению выделяют ком­пенсированную, субкомпенсированную и декомпенсированную формы вторичных иммуноде-фицитов. Компенсированная форма сопро­вождается повышенной восприимчивостью организма к инфекционным агентам, вы­зывающим оппортунистические инфекции. Субкомпенсированная форма характеризует­ся склонностью к хронизации инфекционных процессов. Декомпенсированная форма про­является в виде генерализованных инфекций, вызванных условно-патогенными микробами (УПМ) и злокачественными новообразова­ниями.

Известно разделение вторичных иммунодефицитов на:

Физиологические, новорожденные, пубертатного периода, беременности и лактации, старения, биоритмичности, экологические, сезонные, эндогенные интоксикации, радиационные, СВЧ, патологические, постинфекционные, стрессовые, регуляторно-метаболические, медикаментозные, онкологические.

Иммунодефициты, как первичные, так и особенно вторичные, широко распростране­ны среди людей. Они являются причиной проявления многих болезней и патологичес­ких состояний, поэтому требуют профилак­тики и лечения с помощью иммунотропных препаратов.

№ 73 Реакция агглютинации. Компоненты, механизм, способы постановки. Применение.

Реакция агглютинации — простая по постановке реакция, при которой происходит связыва­ние антителами корпускулярных антигенов (бактерий, эритроцитов или других клеток, нерастворимых частиц с адсорбированными на них антигенами, а также макромолекулярных агрегатов). Она протекает при наличии электролитов, например при добавлении изо­тонического раствора натрия хлорида.

Применяются различные варианты реакции агглютинации: развернутая, ориентировоч­ная, непрямая и др. Реакция агглютинации проявляется образованием хлопьев или осад­ка (клетки, «склеенные» антителами, име ющими два или более антигенсвязывающих центра — рис. 13.1). РА используют для:

1) определения антител в сыворотке крови боль­ных, например, при бруцеллезе (реакции Райта, Хеддельсона), брюшном тифе и паратифах (реак­ция Видаля) и других инфекционных болезнях;

2) определения возбудителя, выделенного от больного;

3) определения групп крови с использова­нием моноклональных антител против алло-антигенов эритроцитов.

Для определения у больного антител ставят развернутую реакцию агглютинации: к разве­дениям сыворотки крови больного добавля­ют диагностикум (взвесь убитых микробов,) и через несколько часов инкубации при 37 ˚С отмечают наибольшее разведение сыворотки (титр сыворотки), при котором произошла агглютинация, т. е. образовался осадок.

Характер и скорость агглютинации зави­сят от вида антигена и антител. Примером являются особенности взаимодействия диагностикумов (О- и H-антигенов) со специ­фическими антителами. Реакция агглютина­ции с О-диагностикумом (бактерии, убитые нагреванием, сохранившие термостабильный О-антиген) происходит в виде мелкозернис­той агглютинации. Реакция агглютинации с Н-диагностикумом (бактерии, убитые фор­малином, сохранившие термолабильный жгу­тиковый Н-антиген) — крупнохлопчатая и протекает быстрее.

Если необходимо определить возбудитель, выделенный от больного, ставят ориентиро­вочную реакцию агглютинации, применяя диа­гностические антитела (агглютинирующую сыворотку), т. е. проводят серотипирование возбудителя. Ориентировочную реакцию проводят на предметном стекле. К капле диа­гностической агглютинирующей сыворотки в разведении 1:10 или 1:20 добавляют чистую культуру возбудителя, выделенного от больно­го. Рядом ставят контроль: вместо сыворотки наносят каплю раствора натрия хлорида. При появлении в капле с сывороткой и микроба­ми хлопьевидного осадка ставят развернутую реакцию агглютинации в пробирках с увели­чивающимися разведениями агглютинирую­щей сыворотки, к которым добавляют по 2—3 капли взвеси возбудителя. Агглютинацию учитывают по количеству осадка и степени просветления жидкости. Реакцию считают положительной, если агглютинация отмеча­ется в разведении, близком к титру диагнос­тической сыворотки. Одновременно учитыва­ют контроли: сыворотка, разведенная изото­ническим раствором натрия хлорида, должна быть прозрачной, взвесь микробов в том же растворе — равномерно мутной, без осадка.

Разные родственные бактерии могут агглю­тинироваться одной и той же диагностической агглютинирующей сывороткой, что затрудня­ет их идентификацию. Поэтому пользуются адсорбированными агглютинирующими сыво­ротками, из которых удалены перекрестно реагирующие антитела путем адсорбции их родственными бактериями. В таких сыво­ротках сохраняются антитела, специфичные только к данной бактерии.

 

№ 74 Реакция Кумбса. Механизм. Компоненты. Применение.

Реакцию агглютинации для определения антирезусных антител (непрямую реакцию Кумбса) применяют у больных при внутрисосудистом гемолизе. У некоторых таких боль­ных обнаруживают антирезусные антитела, которые являются неполными, одновалент­ными. Они специфически взаимодействуют с резус-положительными эритроцитами, но не вызывают их агглютинации. Наличие таких неполных антител определяют в непрямой реакции Кумбса. Для этого в систему антирезусные антитела + резус-положительные эритроциты добавляют антиглобулиновую сыворотку (антитела против иммуноглобули­нов человека), что вызывает агглютинацию эритроцитов. С помощью реакции Кумбса диагностируют патологические состо­яния, связанные с внутрисосудистым лизисом эритроцитов иммунного генеза, например ге­молитическую болезнь новорожденных: эрит­роциты резус-положительного плода соединя­ются с циркулирующими в крови неполными антителами к резус-фактору, которые пере­шли через плаценту от резус-отрицательной матери.

Механизм. Сложность выявления неполных (моновалентных) антител связана с тем, что эти антитела, связываясь с эпитопами специфического антигена, не образуют структуру решетки и реакция между антигенами и антителами не выявляется ни агглютина­цией, ни преципитацией, ни другими тестами. Для выявления образовавшихся комплексов антиген — антитело приходится ис­пользовать дополнительные тест-системы. Для выявления непол­ных антител, например к резус-антигену эритроцитов в сыворот­ке крови беременной женщины, реакция ставится в два этапа: 1) к двукратным разведениям испытуемой сыворотки добавляют эритроциты, содержащие резус-антиген, и выдерживают при 37 °С в течение часа; 2) к тщательно отмытым после первого этапа эритроцитам добавляют кроличью античеловеческую анти-глобулиновую сыворотку (в заранее оттитрованном рабочем раз­ведении). После инкубации в течение 30 мин при 37 °С резуль­таты оценивают по наличию гемагглютинации (положительная реакция). Необходимо ставить контроль ингредиентов реакции: 1) антиглобулиновая сыворотка + заведомо сенсибилизирован­ные специфическими антителами эритроциты; 2) обработанные нормальной сывороткой эритроциты + антиглобулиновая сыво­ротка; 3) обработанные исследуемой сывороткой резус-отрица­тельные эритроциты + антиглобулиновая сыворотка.

 

 

№ 75 Реакция пассивной гемагглютинации. Компоненты. Применение.

Реакция непрямой (пассивной) гемагглютинации (РНГА, РПГА) основана на использова­нии эритроцитов (или латекса) с адсорбиро­ванными на их поверхности антигенами или антителами, взаимодействие которых с соот­ветствующими антителами или антигенами сыворотки крови больных вызывает склеива­ние и выпадение эритроцитов на дно пробирки или ячейки в виде фестончатого осадка.

Компоненты. Для постанов­ки РНГА могут быть использованы эритроциты барана, лошади, кролика, курицы, мыши, человека и другие, которые заготавли­вают впрок, обрабатывая формалином или глютаральдегидом. Ад­сорбционная емкость эритроцитов увеличивается при обработке их растворами танина или хлорида хрома.

Антигенами в РНГА могут служить полисахаридные АГ микро­организмов, экстракты бактериальных вакцин, АГ вирусов и риккетсий, а также другие вещества.

Эритроциты, сенсибилизированные АГ, называются эритроцитарными диагностикумами. Для приготовления эритроцитарного диагностикума чаще всего используют эритроциты барана, обла­дающие высокой адсорбирующей активностью.

Применение. РНГА применяют для диагностики инфекционных болезней, определения гонадотропного гор­мона в моче при установлении беременности, для выявления повышенной чувствительнос­ти к лекарственным препаратам, гормонам и в некоторых других случаях.

Механизм. Реакция непрямой гемагглютинации (РНГА) отличается значительно более высокой чувствительностью и специфич­ностью, чем реакция агглютинации. Ее используют для иденти­фикации возбудителя по его антигенной структуре или для индикации и идентификации бактериальных продуктов — токси­нов в исследуемом патологическом материале. Соответственно используют стандартные (коммерческие) эритроцитарные анти­тельные диагностикумы, полученные путем адсорбции специфи­ческих антител на поверхности танизированных (обработанных танином) эритроцитов. В лунках пластмассовых пластин готовят последовательные разведения исследуемого материала. Затем в каждую лунку вносят одинаковый объем 3 % суспензии на­груженных антителами эритроцитов. При необходимости реакцию ставят параллельно в нескольких рядах лунок с эритроцитами, нагруженными антителами разной групповой специфичности.

Через 2 ч инкубации при 37 °С учитывают результаты, оценивая внешний вид осадка эритроцитов (без встряхивания): при отри­цательной реакции появляется осадок в виде компактного.диска или кольца на дне лунки, при положительной реакции — харак­терный кружевной осадок эритроцитов, тонкая пленка с неров­ными краями.

 

№ 76 Реакция коагглютинации. Механизм, компоненты. Применение.

Реакцию коагглютинации применяют для определения антигенов с помощью антител, адсорбированных на белке А клеток стафилококка (антительный диагностикум).

Белок А имеет сродство к Fc-фрагменту иммуноглобулинов, поэтому такие бактерии, обработанные иммунной диагностической сывороткой неспецифически адсорбируют антитела сыворотки, которые затем взаимодействуют активными центрами с соответствующими микробами, выделенными от больных. В результате коагглютинации образуются хлопья, состоящие из стафилококков, антител диагностической сыворотки и определяемого микроба.

Механизм. Основан на том, что находящийся на поверхности золотистого стафилококка белок А селективно реагирует с Fc-фрагментом IgGl, G2, G4, оставляя свободными антидетерминанты Ат, которые, взаимодействуя с гомологичным Аг, вызывают агглютинацию стафилококков. Для постановки КОА применяют коммерческие стафилококковые реагенты, содержащиеся в ампулах или высушенные в лунках полистироловых пластин или предметных стекол. К реагенту добавляют 0,01-0,1 мл исследуемой культуры или растворимого Аг, инкубируют при комнатной температуре 10-30 мин (в условиях постановки реакции на стекле) или 18 -20 ч (в условиях постановки реакции в капиллярах). Учет проводят так же, как при обычной РА. Агглютинацию учитывают по количеству осадка и степени просветления жидкости. Реакцию считают положительной, если агглютинация отмеча­ется в разведении, близком к титру диагнос­тической сыворотки. Одновременно учитыва­ют контроли: сыворотка, разведенная изото­ническим раствором натрия хлорида, должна быть прозрачной, взвесь микробов в том же растворе — равномерно мутной, без осадка.

 

 

№ 77 Реакция торможения гемагглютинации. Механизм. Компоненты. Применение.

 

Реакция торможения гемагглютинации (РТГА) - метод идентификации вируса или выявления противовирусных антител в сыворотке крови больного, основанный на феномене отсутствия агглютинации эритроцитов препаратом, содержащим вирус, в присутствии иммунной к нему сыворотки крови.

Реакция торможения гемагглютинации (РТГА) основана на блокаде, подавлении ан­тигенов вирусов антителами иммунной сы­воротки, в результате чего вирусы теряют свойство агглютинировать эритроциты.

РТГА применяют для диагностики мно­гих вирусных болезней, возбудители которых (вирусы гриппа, кори, краснухи, клещево­го энцефалита и др.) могут агглютинировать эритроциты различных животных.

Механизм. Типирование вируса проводят в реакции торможения гемаг-глютинации (РТГА) с набором типоспецифических сывороток. Результаты реакции учитывают по отсутствию гемагглютинации. Подтипы вируса А с антигенами H0N1, H1N1, Н2N2, H3N2 и др. могут быть дифференцированы в РТГА с набором гомологичных типоспецифических сывороток.

 

№ 78 Реакция преципитации. Механизм. Компоненты. Спосо­бы постановки. Применение.

 

Реакция преципитации (РП) - это формирова­ние и осаждение комплекса растворимого молекулярного антигена с антителами в виде помутнения, называемого преципитатом. Он образуется при смешивании антигенов и антител в эквивалентных количес­твах; избыток одного из них снижает уровень образования иммунного комплекса.

РП ставят в пробирках (реакция кольцепреципитации), в гелях, питательных средах и др. Широкое рас­пространение получили разновидности РП в полужидком геле агара или агарозы: двойная иммунодиффузия по Оухтерлони, радиальная иммунодиффузия, иммуноэлектрофорез и др.

Механизм. Проводится с прозрачными коллоид­ными растворимыми антигенами, экстрагированными из патоло­гического материала, объектов внешней среды или чистых культур бактерий. В реакции используют прозрачные диагности­ческие преципитирующие сыворотки с высокими титрами анти­тел. За титр преципитирующей сыворотки принимают то наибольшее разведение антигена, которое при взаимодействии с иммун­ной сывороткой вызывает образование видимого преципитата — помутнение.

Реакция кольцепреципитации ставится в узких пробирках (диаметр 0,5 см), в которые вносят по 0,2—0,3 мл преципити-рующей сыворотки. Затем пастеровской пипеткой медленно наслаивают 0,1—0,2 мл раствора антигена. Пробирки осторожно переводят в'вертикальное положение. Учет реакции производят через 1—2 мин. В случае положительной реакции на границе между сывороткой и исследуемым антигеном появляется пре­ципитат в виде белого кольца. В контрольных пробирках преци­питат не образуется.

 

№ 79 Реакция связывания комплемента. Механизм. Компо­ненты. Применение.

Реакция связывания комплемента (РСК) за­ключается в том, что при соответствии друг другу антигены и антитела образуют иммун­ный комплекс, к которому через Fc-фрагмент антител присоединяется комплемент (С), т. е. происходит связывание комплемента комп­лексом антиген—антитело. Если же комплекс антиген—антитело не образуется, то комп­лемент остается свободным.

Специфическое взаимодействие АГ и AT сопровождается адсорб­цией (связыванием) комплемента. Поскольку процесс связыва­ния комплемента не проявляется визуально, Ж. Борде и О.Жангу предложили использовать в качестве индикатора гемолитическую систему (эритроциты барана + гемолитическая сыворотка), кото­рая показывает, фиксирован ли комплемент комплексом АГ-АТ. Если АГ и AT соответствуют друг другу, т. е. образовался иммунный комплекс, то комплемент связывается этим комплексом и гемоли­за не происходит. Если AT не соответствует АГ, то комплекс не образуется и комплемент, оставаясь свободным, соединяется со второй системой и вызывает гемолиз.

Компоненты. Реакция связывания комплемента (РСК) относится к слож­ным серологическим реакциям. Для ее проведения необходимы 5 ингредиентов, а именно: АГ, AT и комплемент (первая система), эритроциты барана и гемолитическая сыворотка (вторая система).

Антигеном для РСК могут быть культуры различных убитых микроорганизмов, их лизаты, компоненты бактерий, патологи­чески измененных и нормальных органов, тканевых липидов, ви­русы и вирусосодержащие материалы.

В качестве комплемента используют свежую или сухую сыво­ротку морской свинки.

Механизм. РСК проводят в две фазы: 1-я фаза — инкубация смеси, содержащей три компонента антиген + антитело + комплемент; 2-я фаза (инди­каторная) — выявление в смеси свободного комплемента путем добавления к ней гемоли­тической системы, состоящей из эритроцитов барана, и гемолитической сыворотки, содер­жащей антитела к ним. В 1-й фазе реакции при образовании комплекса антиген—антите­ло происходит связывание им комплемента, и тогда во 2-й фазе гемолиз сенсибилизирован­ных антителами эритроцитов не произойдет; реакция положительная. Если антиген и ан­титело не соответствуют друг другу (в иссле­дуемом образце нет антигена или антитела), комплемент остается свободным и во 2-й фазе присоединится к комплексу эритроцит — ан-тиэритроцитарное антитело, вызывая гемо­лиз; реакция отрицательная.

Применение. РСК применяют для диагностики многих инфекционных болезней, в частности сифи­лиса (реакция Вассермана).

 

 

№ 80 Реакция нейтрализации токсина антитоксином. Ме­ханизм. Способы постановки, применение.

В основе этой реакции лежит способность специфической ан­титоксической сыворотки нейтрализовать экзотоксин.

Антитела иммунной сыворотки способны нейтрализовать повреждающее действие микробов или их токсинов на чувст­вительные клетки и ткани, что связано с блокадой микробных антигенов антителами, т. е. их нейтрализацией.

Реакцию нейтрализации (РН) проводят путем введения смеси антиген—антитело животным или в чувствительные тест-объекты (культуру клеток, эмбрионы). При отсутствии у животных и тест-объектов повреждающего действия микро­организмов или их антигенов, токсинов говорят о нейтрализу­ющем действии иммунной сыворотки и, следовательно, о спе­цифичности взаимодействия комплекса антиген—антитело.

Для прове­дения реакции исследуемый материал, в котором предполагается наличие экзотоксина, смешивают с антитоксической сывороткой, выдерживают в термостате и вводят животным (морским свин­кам, мышам). Контрольным животным вводят фильтрат исследу­емого материала, не обработанный сывороткой. В том случае, если произойдет нейтрализация экзотоксина антитоксической сыво­роткой, животные опытной группы останутся живыми. Конт­рольные животные погибнут в результате действия экзотоксина.

 

 

№ 81 Реакция иммунофлюоресценции. Механизм, компонен­ты, применение.

 

Иммунофлюоресцентный метод (РИФ, реакция иммунофлюоресценции, реакция Кунса) - метод выявления специфических Аг с помощью Ат, конъюгированных с флюорохромом. Обладает высокой чувствительностью и специфичностью.

Применяется для экспресс-диагностики инфекционных заболеваний (идентификация возбудителя в исследуемом материале), а также для определения Ат и поверхностных рецепторов и маркеров лейкоцитов (иммунофенотипирование) и др. клеток.

Обнаружение бактериальных и вирусных антигенов в инфек­ционных материалах, тканях животных и культурах клеток при помощи флюоресцирующих антител (сывороток) получило широкое применение в диагностической практике. Приготовление флюоресцирующих сывороток основано на спо­собности некоторых флюорохромов (например, изотиоцианата флюоресцеина) вступать в химическую связь с сывороточными белками, не нарушая их иммунологической специфичности.

Различают три разновидности метода: прямой, непрямой, с комплементом. Прямой метод РИФ основан на том, что антигены тканей или микробы, обработанные иммунными сыворотками с антителами, меченными флюорохромами, способны светиться в УФ-лучах люминесцентного микроскопа. Бактерии в мазке, обработанные такой люминесцирующей сывороткой, светятся по периферии клетки в виде каймы зеленого цвета.
Непрямой метод РИФ заключается в выявлении комплекса антиген - антитело с помощью антиглобулиновой (против антитела) сыворотки, меченной флюорохромом. Для этого мазки из взвеси микробов обрабатывают антителами антимикробной кроличьей диагностической сыворотки. Затем антитела, не связавшиеся антигенами микробов, отмывают, а оставшиеся на микробах антитела выявляют, обрабатывая мазок антиглобулиновой (антикроличьей) сывороткой, меченной флюорохромами. В результате образуется комплекс микроб + антимикробные кроличьи антитела + антикроличьи антитела, меченные флюорохромом. Этот комплекс наблюдают в люминесцентном микроскопе, как и при прямом методе.

Механизм. На предметном стекле готовят мазок из исследуемого ма­териала, фиксируют на пламени и обрабатывают иммунной кроличьей сывороткой, содержащей антитела против антигенов возбудителя. Для образования комплекса антиген — антитело препарат помещают во влажную камеру и инкубируют при 37 °С в течение 15 мин, после чего тщательно промывают изото­ническим раствором хлорида натрия для удаления не связавших­ся с антигеном антител. Затем на препарат наносят флюоресци­рующую антиглобулиновую сыворотку против глобулинов кро­лика, выдерживают в течение 15 мин при 37 °С, а затем препарат тщательно промывают изотоническим раствором хлорида натрия. В результате связывания флюоресцирующей антиглобулиновой сыворотки с фиксированными на антигене специфическими анти телами образуются светящиеся комплексы антиген — антитело, которые обнаруживаются при люминесцентной микроскопии.

 

№ 82 Иммуноферментный анализ, иммуноблоттинг. Меха­низм, компоненты, применение.

Иммуноферментный анализ или метод — выявление ан­тигенов с помощью соответствующих им антител, конъюгированных с ферментом-меткой (пероксидазой хрена, бета-галактозидазой или щелочной фосфатазой). После соединения антигена с меченной ферментом иммунной сывороткой в смесь добавляют субстрат/хромоген. Субстрат расщепляется ферментом и изменяется цвет продукта реакции — интен­сивность окраски прямо пропорциональна количеству свя­завшихся молекул антигена и антител. ИФА применяют для диагностики вирусных, бактериальных и паразитарных бо­лезней, в частности для диагностики ВИЧ-инфекций, гепати­та В и др., а также определения гормонов, ферментов, лекар­ственных препаратов и других биологически активных ве­ществ, содержащихся в исследуемом материале в минорных концентрациях (1010-1012 г/л).

Твердофазный ИФА — вариант теста, когда один из компо­нентов иммунной реакции (антиген или антитело) сорбирован на твердом носителе, напр., в лунках планшеток из полистирола. Компоненты выявляют добавлением меченых антител или анти­генов. При положительном результате изменяется цвет хромоге­на. Каждый раз после добавления очередного компонента из лунок удаляют несвязавшиеся реагенты путем промывания,

I. При определении антител (левый рисунок) в лунки планшеток с сорбированным антигеном последовательно добавляют сы­воротку крови больного, антиглобулиновую сыворотку, ме­ченную ферментом, и субстрат/хромоген для фермента.

II. При определении антигена (правый рисунок) в лунки с сорби­рованными антителами вносят антиген (напр., сыворотку кро­ви с искомым антигеном), добавляют диагностическую сыво­ротку против него и вторичные антитела (против диагностиче­ской сыворотки), меченные ферментом, а затем субстрат/хро­моген для фермента.

Конкурентный ИФА для определения антигенов: искомый антиген и меченный ферментом антиген конкурируют друг с другом за связывание ограниченного количества антител иммунной сыворотки.

Другой тест - Конкурентный ИФА для определения антител: искомые анти­тела и меченные ферментом антитела конкурируют друг с дру­гом за антигены, сорбированные на твердой фазе.

Иммуноблоттинг — высокочувстви­тельный метод выявления белков, основанный на сочетании электрофореза и ИФА или РИА. Иммуноблоттинг ис­пользуют как диагностический метод при ВИЧ-инфекции и др.

Антигены возбудителя разделяют с помощью электрофоре­за в полиакриламидном геле, затем переносят их из геля на активированную бумагуили нитроцеллюлозную мембрану и проявляют с помощью ИФА. Фирмы выпускают такие полоски с «блотами» антиге­нов. На эти полоски наносят сыворотку больного. Затем, после инкубации, отмывают от несвязавшихся антител боль­ного и наносят сыворотку против иммуноглобулинов челове­ка, меченную ферментом. Образовавшийся на полоске комплекс [антиген + антитело больного + антитело против Ig человека] выявляют добавлением хромогенного субстрата, изменяющего окраску под действием фермента.

 

№ 83 Серологические реакции, используемые для диагнос­тики вирусных инфекций.

 

Иммунные реакции используют при диа­гностических и иммунологических исследо­ваниях у больных и здоровых людей. С этой целью применяют серологические методы, т. е. методы изучения антител и антигенов с помо­щью реакций антиген—антитело, определяе­мых в сыворотке крови и других жидкостях, а также тканях организма.

Обнаружение в сыворотке крови боль­ного антител против антигенов возбудите­ля позволяет поставить диагноз болезни. Серологические исследования применяют также для идентификации антигенов микро­бов, различных биологически активных ве­ществ, групп крови, тканевых и опухолевых антигенов, иммунных комплексов, рецепто­ров клеток и др.

При выделении микроба от больного про­водят идентификацию возбудителя путем изучения его антигенных свойств с помощью иммунных диагностических сывороток, т. е. сывороток крови гипериммунизированных животных, содержащих специфические ан­титела. Это так называемая серологическая идентификация микроорганизмов.

В микробиологии и иммунологии широко применяются реакции агглютинации, преци­питации, нейтрализации, реакции с участи­ем комплемента, с использованием меченых антител и антигенов (радиоиммунологичес­кий, иммуноферментный, иммунофлюоресцентный методы). Перечисленные реакции различаются по регистрируемому эффекту и технике постановки, однако, все они осно­ваны на реакции взаимодействия антигена с антителом и применяются для выявления как антител, так и антигенов. Реакции иммуните­та характеризуются высокой чувствительнос­тью и специфичностью.

Особенности взаимодействия антитела с ан­тигеном являются основой диагностических реакций в лабораториях. Реакция in vitro меж­ду антигеном и антителом состоит из специ­фической и неспецифической фазы. В специ­фическую фазу происходит быстрое специфи­ческое связывание активного центра антитела с детерминантой антигена. Затем наступает неспецифическая фаза — более медленная, ко­торая проявляется видимыми физическими явлениями, например образованием хлопьев (феномен агглютинации) или преципитата в виде помутнения. Эта фаза требует наличия определенных условий (электролитов, опти­мального рН среды).

Связывание детерминанты антигена (эпитопа) с активным центром Fab-фрагмента анти­тел обусловлено ван-дер-ваальсовыми силами, водородными связями и гидрофобным взаимо­действием. Прочность и количество связавше­гося антигена антителами зависят от аффин­ности, авидности антител и их валентности.

 

 

№ 84 Диагностикумы. Получение, применение.

 

В диагностических целях при обнаружении антител в сы­воротке крови больных, реконвалесцентов и бактерионосите­лей используются серологические реакции.

Для постановки таких реакций применяются диагностикумы - препараты, содержащие взвесь обезвреженных микроор­ганизмов или определенные антигены.

Необходимость использования диагностикумов для сероло­гических реакций связана не только с явным их преимущест­вом перед живыми культурами микробов (безопасность в ра­боте), но еще и потому, что для приготовления диагностикумов подбираются штаммы микроорганизмов с высокой чувст­вительностью к антителам и способностью длительно сохра­нять антигенные свойства.

Для инактивации микроорганизмов при приготовлении диагностикумов чаще всего используются химические вещест­ва, особенно формалин, являющийся лучшим консервантом. Убитые нагреванием микробы хуже сохраняют антигенные свойства и применяются редко.

В серологических реакциях (реакции агглютинации, реак­ции пассивной гемагглютинации, реакции связывания компле­мента, реакции торможения гемагглютинации) для выявления специфических антител применяются: бактериальные, эритроцитарные и вирусные диагностикумы.

Бактериальные диагностикумы могут содержать инактивированную микробную взвесь или отдельные антигенные компоненты бактерий: О, Н или Vi-антигены и используются в реакциях агглютинации.

Эритроцитарные диагностикумы представляют собой эритроциты (обработанные танином или формалином) с ад­сорбированными на них антигенами, извлеченными из бакте­рий, и применяются в РПГА (реакции пассивной гемагглютинации). В том случае, когда РПГА используется для выяв­ления антигена в выделениях больных, в тканях и др., при­меняют «антительные диагностикумы», т. е. эритроциты, сен­сибилизированные антителами.

Вирусные диагностикумы — препараты, содержащие инактированные вируссодержащие жидкости (культуральные, из куриных эмбрионов или организма животных, зараженных соответствующим вирусом), применяются в РСК (реакции связывания комплемента), реакции торможения гемагглютинации (РТГА) и реакции нейтрализации.

В настоящее время в лабораториях используются следу­ющие диагноста кумы.

1. Бактериальный диагностикум сальмонелл тифа. Приме­няется в реакции агглютинации для обнаружения антител в сыворотке больных.

2. Сальмонеллезные О-диагностикумы содержат О-антигены различных групп сальмонелл (инактивированных 15%-ным раствором глицерина). Применяются для выявления О-аптител при сальмонеллезных инфекциях в реакции агглю­тинации с сывороткой больных.

3. Сальмонеллезные Н-монодиагностикумы. Исполь­зуются в реакции агглютинации для определения заболевания в прошлом (анамнестическая реакция агглютинации) и реже с диагностической целью.

4. Vi — брюшнотифозный диагностикум. Применяется в реакции агглютинации при выявлении брюшноти­фозного бактерионосительства.

5. Единый бруцеллезный диагностикум — взвесь бруцелл (инактивированных фенолом), подкрашенная метиленовым синим. Применяется для определения антител в сыворотках крови больных бруцеллезом людей и животных в реакциях агглютинации Райта и Хеддльсона.

6. Эритроцитарный сальмонеллезный О-диагностикум — взвесь эритроцитов с адсорбированными на них О-антигенами различных групп сальмонелл. Используется для постановки РПГА с сывороткой больного при уточнении клинического диагноза сальмонеллеэной инфекции.

7. Эритроцитарный Vi-диагностикум — эритроциты, сенси­билизированные очищенным Vi-антигеиом S. typhi, применяет­ся в РПГА при выявлении брюшнотифозного бактерионоси­тельства.

8. Гриппозный диагностикум представляет собой аллантоисную жидкость инфицированных вирусом гриппа (типов А, В) куриных эмбрионов и инактивированную мертиолатом или формалином. Диагностикумы необходимы при постановке РТГА с парными сыворотками больных для уточнения кли­нического диагноза и циркулирующего типа вируса гриппа.

9. Диагностикум вируса клещевого энцефалита получают из суспензии мозга белых мышей, зараженных вирусом кле­щевого энцефалита. Суспензию подвергают центрифугирова­нию (для осветлення) и инактивируют химическими вещест­вами.

Диагностикум используется в РТГА и РСК с сывороткой больных при диагностике заболевания.

 

№ 85 Моноклональные антитела. Получение, применение.

 

Моноклональные антитела. Каждый В-лимфоцит и его потомки, образовавшиеся в ре­зультате пролиферации (т.е. клон), способны синтезировать антитела с паратопом строго определенной специфичности. Такие антитела получили название моноклональных. В природ­ных условиях макроорганизма получить моно­клональные антитела практически невозмож­но. Дело в том, что на одну и ту же антигенную детерминанту одновременно реагируют до 100 различных клонов В-лимфоцитов, незначи­тельно различающихся антигенной специфич­ностью рецепторов и, естественно, аффиннос­тью. Поэтому в результате иммунизации даже монодетерминантным антигеном мы всегда получаем политональные антитела.

Принципиально получение моноклональных антител выполнимо, если провести пред­варительную селекцию антителопродуцирующих клеток и их клонирование (т.е. выделение отдельных клонов в чистые культуры). Однако задача осложняется тем, что В-лимфоциты, как и другие эукариотические клетки, имеют ограниченную продолжительность жизни и число возможных митотических делений.

Проблема получения моноклональных ан­тител была успешно решена Д. Келлером и Ц. Милыптейном. Авторы получили гибридные клетки путем слияния иммун­ных В-лимфоцитов с миеломной (опухоле­вой) клеткой. Полученные гибриды обладали специфическими свойствами антителопро-дуцента и «бессмертием» раковотрансформированной клетки. Такой вид клеток полу­чил название гибридом. Гибридома хорошо размножается в искусственных питательных средах и в организме животных и в неогра­ниченном количестве вырабатывает антите­ла. В результате дальнейшей селекции были отобраны отдельные клоны гибридных кле­ток, обладавшие наивысшей продуктивнос­тью и наибольшей аффинностью специфи­ческих антител.

Гибридомы, продуцирующие моноклональые антитела, размножают или в аппаратах, приспособленных для выращивания культур клеток или же вводя их внутрибрюшинно особой линии (асцитным) мышам. В послед­нем случае моноклональные антитела накап­ливаются в асцитной жидкости, в которой размножаются губридомы. Полученные как тем, так и другим способом моноклональные антитела подвергают очистке, стандартиза­ции и используют для создания на их основе диагностических препаратов.

Гибридомные моноклональные антитела нашли широкое применение при создании диагностических и лечебных иммунобиоло­гических препаратов.

 

 

№ 86 Методы приготовления и применения агглютинирую­щих, адсорбированных сывороток.

 

В диагностике инфекционных болезней широко применя­ются иммунные реакции при идентификации возбудителя: при установлении родовой, видовой и типовой принадлежности микроба (вируса). Для постановки таких реакций необходимы специфические диагностические сыворотки, которые в зависи­мости от содержания соответствующих антител называются агглютинирующие, преципитирующие, гемо­литические, противовирусные.

Агглютинирующие сыворотки. Агглютинирующую сыворотку получают иммунизацией Кроликов (внутривенно, подкожно или внутрибрюшинно) взвесью убитых бактерий, начиная с дозы 200 млн., затем 500 млн., 1 млрд., 2 млрд., микробных тел в 1 мл, с интервалами 5 дней. Через 7—8 дней после последней иммунизации берут кровь и определяют титр антител. Титром агглютини­рующей сыворотки называется то макси­мальное разведение сыворотки, при котором происходит агглютинация с соответствую­щим микроорганизмом.

Агглютинирующие сыворотки применяются при идентифи­кации микроба в развернутой реакции агглютинации. Если изучаемый микроорганизм агглютинируется сывороткой до титра или до половины значения титра, его можно считать принадлежащим к тому виду, название которого указано на этикетке ампулы.

Неадсорбированные агглютинирующие сыворотки облада­ют высоким титром — до 1: 12 800 — 1: 25 600.

Недостатком таких сывороток является то, что они способ­ны давать групповые реакции агглютинации, так как они содержат антитела к бактериям, имеющим общие антигены в пределах семейства, группы и рода.

Поэтому в настоящее время большинство агглютинирую­щих сывороток выпускаются адсорбированиими, монорецепторными и адсорбированными поливалентными, содер­жащими только типовые или видовые антитела и соответст­вующими или определенному типу или виду микроорганизма. Эти сыворотки не подлежат разведению.

Для получения таких сывороток нрименяют метод Кастелляни — метод адсорбции, который состоит в том, что при насыщении агглютинирующей сыворотки родственны­ми гетерогенными бактериями происходит адсорбция группоных антител, а специфические антитела остаются в сыворот­ке. В зависимости от полноты истощения групповых агглюти­нинов можно получить монорецепторные сыворотки — сыво­ротки, имеющие антитела только к одному рецептору-антигену или адсорбированные, поливалентные, дающие реакции агглю­тинации с двумя — тремя родственными бактериями, имею­щими общий антиген, в отношении которого проводилась ад­сорбция.

Адсорбированные сыворотки применяют при идентифика­ции выделенных возбудителей в реакции агглютинации на стекле (пластинчатый метод).

Агглютинирующие сыворотки наиболее широко применя­ются при диагностике заболеваний, вызываемых бактериями семейства Enferobacferiaceae. Так, при идентификации эшерихий используются поливалентные и типовые ОК-сыворотки; при дифференциации сальмонелл — набор сывороток: агглю­тинирующая адсорбированная поливалентная сальмонеллезная О-сыворотка (групп А, В, С, Д, Е) — для определения принадлежности к роду Salmonella, при положительном ре­зультате — определяют отдельно с каждой сывороткой (входя­щей в смесь) серологическую группу и в заключение опреде­ляется серологический тип выделенного возбудителя с моно-рецепторными Н-сыворотками сальмонелл, входящих в данную группу.

 

№ 87 Вакцины. Определение. Современная классификация вакцин. Требования, предъявляемые к современным вакцинным препаратам.

Вакцина — медицинский препарат, предназначенный для создания иммунитета к инфекционным болезням.

Классификации вакцин:

1.Живые вакцины - препараты, действующим началом в которых являются ослабленные тем или иным способом, потерявшие свою вирулентность, но сохранившие специфическую антигенность штаммы патогенных бактерий. Примером таких вакцин являются БЦЖ и вакцина против натуральной оспы человека, в качестве которой используется непатогенный для человека вирус оспы коров.

2.Инактивированные (убитые) вакцины – препараты, в качестве действующего начала включающие убитые химическим или физическим способом культуры патогенных вирусов или бактерий, (клеточные, вирионные) или же извлечённые из патогенных микробов комплексы антигенов, содержащие в своём составе проективные антигены (субклеточные, субвирионные вакцины). В препараты иногда добавляют консерванты и адьюванты.

Молекулярные вакцины – в них антиген находится в молекулярной форме или даже в виде фрагментов его молекул, определяющих специфичность т. е. в виде эпитопов, детерминант.

Корпускулярные вакцины – содержащие в своем составе протективный антиген

3.Анатоксины относятся к числу наиболее эффективных препаратов. Принцип получения – токсин соответствующей бактерии в молекулярном виде превращают в нетоксичную, но сохранившую свою антигенную специфичность форму путем воздействия 0.4% формальдегида при 37t в течение 3-4 недель, далее анатоксин концентрируют, очищают, добавляют адьюванты.

4.Синтетические вакцины. Молекулы эпитопов сами по себе не обладают высокой иммуногенностью для повышения их антигенных свойств эти молекулы сшиваются с полимерным крупномолекулярным безвредным веществом, иногда добавляют адьюванты.

5.Ассоциированные вакцины – препараты, включающие несколько разнородных антигенов.

Требования, предъявляемые к современным вакцинам:

Иммуногенность;

Низкая реактогенность (аллергенность);

Не должны обладать тератогенностью, онкогенностью;

Штаммы, из которых приготовлена вакцина, должны быть генетически стабильны;

Длительный срок хранения;

Технологичность производства;

Простота и доступность в применении.

№ 88 Живые вакцины. получение, применение. Достоинства и недостатки.

Живые вакцины - препараты, действующим началом в которых являются ослабленные тем или иным способом, потерявшие свою вирулентность, но сохранившие специфическую антигенность штаммы патогенных бактерий.

Аттенуация (ослабление) возможна путём воздействия на штамм химических (мутагены) и физических (температура) факторов или посредством длительных пассажей через невосприимчивый организм. Так же в качестве живых вакцин используются дивергентные штаммы (непатогенные для человека), имеющие общие протективные антигены с патогенными для человека микробами. Примером такой вакцины является БЦЖ и вакцина против натуральной оспы.

Возможно получение живых вакцин генно-инженерным способом. Принцип получения таких вакцин сводится к созданию непатогенных для человека рекмбинантных штаммов, несущих протективные антигены патогенных микробов и способных при введении в орг. человека размножаться и создавать иммунитет. Такие вакцины называют векторными.

Вне зависимости от того, какие штаммы включены в вакцины, бактерии получают путём выращивания на искусственных питательных средах, культурах клеток или куриных эмбрионах. В живую вакцину, как правило, добавляют стабилизатор, после чего подвергают лиофильному высушиванию.

В связи с тем, что живые вакцины способны вызывать вакцинную инфекцию (живые аттенуированные микробы размножаются в организме, вызывая воспалительный процесс проходящий без клинических проявлений), они всегда вызывают перестройку иммунобиологического статуса организма и образование специфических антител. Это так же может являться недостатком, т. к. живые вакцины чаще вызывают аллергические реакции.

Вакцины данного типа, как правило, вводятся однократно.

Примеры: сибиреязвенная вакцина, чумная вакцина, бруцеллёзная вакцина, БЦЖ вакцина, оспенная дермальная вакцина.

 

№ 89 Инактивированные (корпускулярные) вакцины. Применение. Недостатки.

Инактивированные (убитые, корпускулярные или молекулярные) вакцины – препараты, в качестве действующего начала включающие убитые химическим или физическим способом культуры патогенных вирусов или бактерий, (клеточные, вирионные) или же извлечённые из патогенных микробов комплексы антигенов, содержащие в своём составе проективные антигены (субклеточные, субвирионные вакцины).

Для выделения из бактерий и вирусов антигенных комплексов (гликопротеинов, ЛПС, белков) применяют трихлоруксусную кислоту, фенол, ферменты, изоэлектрическое осаждение.

Их получают путем выращивания патогенных бактерий и вирусов на искусственных питательных средах, инактивируют, выделяют антигенные комплексы, очищают, конструируют в виде жидкого или лиофильного препарата.

Преимуществом данного типа вакцин является относительная простота получения (не требуется длительного изучения и выделения штаммов). К недостаткам же относятся низкая иммуногенность, потребность в трехкратном применении и высокая реактогенность формализированных вакцин. Так же, по сравнению с живыми вакцинами, иммунитет, вызываемый ими, непродолжителен.

В настоящее время применяются следующие убитые вакцины: брюшнотифозная, обогащенная Vi антигеном; холерная вакцина, коклюшная вакцина

 

 

№ 90 Субклеточные и субъединичные вакцины. Получение. Преимущество. Применение. Роль адъювантов.

Действующим началом этого типа препаратов являются протективные антигены бактерий, полученные путем воздействия ультразвука на бактериальные клетки.

Главным преимуществом данного типа вакцин является их низкая реактогеннность.

Адьюванты применяются для усиления иммуногенности вакцин. В качестве адъювантов используют минеральные сорбенты (гели гидрата окиси и фосфата аммония), полимеры, и др. хим. соединения, бактерии и компоненты бактерий, липиды, вещества, вызывающие воспалительную реакцию. Они действуют на антиген и организм в целом. Действие на антиген сводится к укрупнению молекул антигена, т. е. превращению растворимых антигенов в корпускулярные, в результате чего антиген лучше захватывается иммунокомпетентными клетками. При воздействии на организм в месте инъекции адьюванты вызывают воспалительный процесс образование фиброзной капсулы, что способствует более длительному сохранению антигена в «депо» и суммации антигенных раздражений. Адьюванты так же непосредственно активируют пролиферацию В, Т и А систем иммунитета.

 

№ 91Молекулярные вакцины. Анатоксины. Получение, очистка, титрование. Применение.

Молекулярные вакцины – в них антиген находится в молекулярной форме или даже в виде фрагментов его молекул, определяющих специфичность т. е. в виде эпитопов, детерминант.

В процессе культивирования природных патогенных микробов можно получить протективный антиген, синтезируемый этими бактериями токсин затем превращается в анатоксин, сохраняющий специфическую антигенность и иммуногенность. Анатоксины являются одним из видов молекулярных вакцин. Анатоксины – препараты, полученные из бактериальных экзотоксинов, полностью лишенные своих токсических свойств, но сохранившие антигенные и иммуногенные свойства. Получение: токсигенные бактерии выращивают на жидких средах, фильтруют с помощью бактериальных фильтров для удаления микробных тел, к фильтрату добавляют 0,4% формалина и выдерживают в термостате при 30-40t на 4 недели до полного исчезновения токсических свойств, проверяют на стерильность, токсигенность и иммуногенность. Эти препараты называются нативными анатоксинам, в настоящее время почти не используются, т. к. содержат большое количество балластных веществ, неблагоприятно влияющих на организм. Анатоксины подвергаю физической и химической очистке, адсорбируют на адъювантах. Такие препараты называются адсорбированными высокоочищенными концентрированными анатоксинами.

Титрование анатоксинов в реакции фолликуляции производят по стандартной фолликулирующей атитоксической сыворотке, в которой известно количество антитоксических единиц. 1 антигенная единица анатоксина обозначается Lf, это то количество анатоксина, которое вступает в реакцию фолликуляции с 1 единицей дифтерийного анатоксина.

Анатоксины применяются для профилактики и реже, для лечения токсинемических инфекций дифтерия, газовая гангрена, ботулизм, столбняк). Так же анатоксины применяются для получения антитоксических сывороток путем гипериммунизации животных.

Примеры препаратов: АКДС, АДС, адсорбированный стафилококковый анатоксин, ботулинистический анатоксин, анатоксины из экзотоксинов возбудителей газовых инфекций.

 

№ 92 Ассоциированные и комбинированные вакцинные препараты. Достоинства. Вакцинотерапия.

Ассоциированные вакцины – препараты, включающие несколько разнородных антигенов и позволяющие проводить иммунизацию против нескольких инфекций одновременно. Если в препарат входят однородные антигены, то такую ассоциированную вакцину называют поливакциной. Если же ассоциированный препарат состоит из разнородных антигенов, то его целесообразно называть комбинированной вакциной.

Возможна так же комбинированная иммунизация, когда одновременно вводят несколько вакцин в различные участки тела, например, против оспы(накожно) и чумы(подкожно)

Примером поливакцины можно считать живую полиомиелитную поливакцину, содержащую аттенуированные штаммы вируса полиомиелита I, II, III типов. Примером комбинированной вакцины является АКДС, куда входят инактивированная корпускулярная коклюшная вакцина, дифтерийный и столбнячный анатоксин.

Комбинированные вакцины применяются в сложной противоэпидемической обстановке. В основе их действия лежит способность иммунной системы отвечать на несколько антигенов одновременно

 

№ 93 Генно-инженерные вакцины. Принципы получения, применение.

Генно-инженерные вакцины – это препараты, полученные с помощью биотехнологии, которая по сути сводиться к генетической рекомбинации.

Для начала получают ген, который должен быть встроен в геном реципиента. Небольшие гены могут быть получены методом химического синтеза. Для этого расшифровывается число и последовательность аминокислот в белковой молекуле вещества, затем по этим данным узнают очерёдность нуклеотидов в гене, далее следует синтез гена химическим путем.

Крупные структуры, которые довольно сложно синтезировать получаются путем выделения(клонирования), прицельного выщепления этих генетических образований с помощью рестриктаз.

Полученный одним из способов целевой ген с помощью ферментов сшивается с другим геном, который используется в качестве вектора для встраивания гибридного гена в клетку. Вектором могут служить плазмиды, бактериофаги, вирусы человека и животных. Экспрессируемый ген встраивается в бактериальную или животную клетку, которая начинает синтезировать несвойственное ей ранее вещество, кодируемое эксперссируемым геном.

В качестве реципиентов экспрессируемого гена чаще всего используется E. coli, B. subtilis, псевдомонады, дрожжи, вирусы. некоторые штаммы способны переключаться на синтез чужеродного вещества до 50% своих синтетических возможностей – эти штамм называются суперпродуцентами.

Иногда к генно-инженерным вакцинам добавляется адъювант.

Примерами таких вакцин служат вакцина против гепатита В (энджерикс), сифилиса, холеры, бруцеллёза, гриппа, бешенства.

Есть определённые сложности в разработке и применении:

- длительное время к генно-инженерным препаратам относились настороженно.

- на разработку технологии для получения вакцины затрачиваются значительные средства

- при получении препаратов данным способом возникает вопрос об идентичности полученного материала природному веществу.

 

№ 94 Иммунные сыворотки. Классификация. Получение, очистка. Применение.

Иммунные сыворотки: иммунологические препараты на основе антител.

1.Антитоксические - сыворотки против дифтерии, столбняка, ботулизма, газовой гангрены, т.е. сыво­ротки, содержащие в качестве антител антитоксины, которые нейтрализуют специфические токсины.

2.Антибактериальные - сыворотки, содержащие агглютинины, преципитины, комплементсвязывающие антитела к воз­будителям брюшного тифа, дизентерии, чумы, коклюша.

3.Противовирусныесыворотки (коревая, гриппоз­ная, антирабическая) содержат вируснейтрализующие, комплементсвязывающие противовирусные антитела.

Иммунные сыворотки получают путем гипе­риммунизации животных (ло­шади) специфическим антигеном (анатоксином, бактериальными или вирусными культурами и их антигенами) с пос­ледующим, в период максимального антителообразования, выделением из крови иммунной сыворотки. Иммунные сы­воротки, полученные от животных, называют гетерогенными, так как они содержат чужерод­ные для человека сывороточные белки.

Для получения гомологичных нечужеродных иммунных сывороток используют сы­воротки переболевших людей (коревая, оспенная сыворотки) или специ­ально иммунизированных людей-доноров (противостолбнячная, противоботулиническая), содержащие антитела к ряду возбудителей инфекционных болезней вследствие вакци­нации или перенесенного заболевания.

Нативные иммунные сыворотки содержат ненужные белки (альбумин), из этих сывороток выделяют и подвергают очистке специфические белки- иммуноглобулины. Методы очистки: осаждение спиртом, ацетоном на холоде, обработка ферментами.

Иммунные сыворотки создают пассивный специфический иммунитет сразу после введения. Применяют с лечебной и профилактической целью. Для лечения токсинемических инфекций (столбняк, ботулизм, дифтерия, газовая гангрена), а также для ле­чения бактериальных и вирусных инфекций (корь, краснуха, чума, сибирская язва). С лечебной целью сывороточные препараты в/м. Профилактически: в/м лицам, имевшим контакт с больным, для создания пассивного иммунитета.

 

№ 95 Антитоксические сыворотки. Получение, очистка, титро­вание. Применение. Осложнения при использовании и их преду­преждение.

Антитоксические гетерогенные сыворотки получаются путем гипериммунизации различных животных. Они называются гетерогенными т.к. содержат чужеродные для человека сывороточные белки. Более предпочтительным является применение гомологичных антитоксических сывороток, для получения которых используется сыворотка переболевших людей (коревая, паротидная), или специально иммунизированных доноров(противостолбнячная, противоботулинистическая), сыворотка из плацентарной а так же абортивной крови, содержащие антитела к ряду возбудителей инфекционных болезней вследствие вакцинации или перенесенного заболевания.

Для очистки и концентрирования антитоксических сывороток используют методы: осаждение спиртом или ацетоном на холоде, обработка ферментами, аффинная хроматография, ультрафильтрация.

Активность иммунных антитоксических сывороток выражают в антитоксических единицах, т.е. тем наименьшим кол-вом антител, которое вызывает видимую или регистрируемую соответствующим способом реакцию с определённым кол-вом специфического антигена. активность антитоксической противостолбнячной сыворотки и соответствующего Ig выражается в антитоксических единицах.

Антитоксические сыворотки применяются для лечения токсинемических инфекций (столбняк, ботулизм, дифтерия, газовая гангрена).

После введения антитоксических сывороток возможны осложнения в виде анафилактического шока и сывороточной болезни, поэтому пред введением препаратов ставят аллергическую пробу на чувствительность к ним пациента, а вводят их дробно, по Безредке.

 

№ 96Препараты иммуноглобулинов. Получение, очистка, по­казания к применению.

Нативные иммунные сыворотки содержат ненужные белки (альбумин), из этих сывороток выделяют и подвергают очистке специфические белки- иммуноглобулины.

Иммуноглобулины, иммунные сыворотки подразделяют на:

1.Антитоксические - сыворотки против дифтерии, столбняка, ботулизма, газовой гангрены, т.е. сыво­ротки, содержащие в качестве антител антитоксины, которые нейтрализуют специфические токсины.

2.Антибактериальные - сыворотки, содержащие агглютинины, преципитины, комплементсвязывающие антитела к воз­будителям брюшного тифа, дизентерии, чумы, коклюша.

3.Противовирусныесыворотки (коревая, гриппоз­ная, антирабическая) содержат вируснейтрализующие, комплементсвязывающие противовирусные антитела.

Методы очистки: осаждение спиртом, ацетоном на холоде, обработка ферментами, аффинная хроматография, ультрафильтрация.

Активность иммуноглобулинов выражают в антитоксических единицах, в титрах вируснейтрализующей, гемагглютинирующей, агглютинирующей активности, т.е. тем наименьшим количеством антител, которое вызывает видимую реакцию с определенным количеством специфического антигена.

Иммуноглобулины создают пассивный специфический иммунитет сразу после введения. Применяют с лечебной и профилактической целью. Для лечения токсинемических инфекций (столбняк, ботулизм, дифтерия, газовая гангрена), а также для ле­чения бактериальных и вирусных инфекций (корь, краснуха, чума, сибирская язва). С лечебной целью сывороточные препараты в/м. Профилактически: в/м лицам, имевшим контакт с больным, для создания пассивного иммунитета.

При необходимости экстренного создания иммунитета, для лечения развивающейся инфекции применяют иммуноглобулины, содержащие готовые антитела.

 

№ 97 Понятие об иммуномодуляторах. Принцип действия. Применение.

 

Иммуномодуляторы – вещества, оказывающие влияние на функцию иммунной системы, изменяющие активность иммунной системы в сторону повешения (иммуностимуляторы) или понижения (иммунодепрессанты) её активности.

К экзогенным иммуномодуляторам отно­сится большая группа веществ различной хи­мической природы и происхождения, оказы­вающих неспецифическое активирующее или супрессивное действие на иммунную систему, но являющихся чужеродными для организма. Антибиотики, левамизол, полисахариды, ЛПС, адъюванты.

Эндогенные иммуномодуляторы представляют собой достаточно большую группу олигопептидов, синтезируемых самим организмом, его иммунокомпетентными клетка­ми, и способных активировать иммунную сис­тему путем усиления функции иммунокомпетентных клеток. К ним относятся регуляторные пептиды: интерлейкины, интерфероны, гормоны тимуса.

Применение иммуномодуляторов: при первичных и вторичных имму-нодефицитах различного происхождения, при онкологических болезнях, при транспланта­ции органов и тканей, при лечении иммуно­патологических и аллергических болезней, в иммунопрофилактике и лечении инфек­ционных болезней.

Созданы препараты, обладающие иммуномодулирующим действием: интерферон, лейкоферон, виферон.

 

 

№ 98 Интерфероны. Природа, способы получения. Применение.

Интерфероны — гликопротеины, вырабатываемые клетками в ответ на вирусную инфекцию и другие стимулы. Бло­кируют репродукцию вируса в других клетках и участвуют во взаимодействии клеток иммунной системы. Различают две се­рологические группы интерферонов: I тип — ИФН-α и ИФН -β; II тип — ИФН-.γ Интерфероны I типа оказывают противовирус­ные и противоопухолевые эффекты, в то время как интерферон II типа регулирует специфический иммунный ответ и неспеци­фическую резистентность.

α- интерферон (лейкоцитарный) продуцируется лейкоцитами, обработанными вирусами и другими агентами. β-интерферон (фибробластный) продуцируется фибробластами, обработанными вирусами.

ИФН I типа, связываясь со здоровыми клетками, защищает их от вирусов. Антивирусное действие ИФН I типа может обуславливаться и тем, что он способен угне­тать клеточную пролиферацию, препятствуя синтезу аминокис­лот.

ИФН-γ продуцируется Т-лимфоцитами и NK. Стимулирует активность Т- и В-лимфоцитов, моноци­тов/макрофагов и нейтрофилов. Индуцирует апоптоз активированных макрофагов, кератиноцитов, гепатоцитов, клеток костного мозга, эндотелиоцитов и подавляет апоптоз периферических моноцитов и герпес-инфицированных нейронов.

Генно-инженерный лейкоцитарный интерферон получают в прокариотических системах (кишечной палочке). Биотехнология получения лейкоцитарного интерферона включает следующие этапы: 1) об­работка лейкоцитарной массы индукторами интерферона; 2) выделение из обработанных клеток смеси иРНК; 3) получение суммарных комплемен­тарных ДНК с помощью обратной транскриптазы; 4) встраивание кДНК в плазмиду кишечной палочки и ее клонирование; 5) отбор клонов, содержащих гены интерферона; 6) включение в плазмиду сильного промо­тора для успешной транскрипции гена; 7) экспрессия гена интерферона, т.е. синтез соответствующего белка; 8) разрушение прокариотических клеток и очистка интерферона с помощью аффинной хроматографии.

Интерфероны применяются для профи­лактики и лечения ряда вирусных инфекций. Их эффект определяется до­зой препарата, однако высокие дозы интерферона оказывают токсическое действие. Интерфероны широко применяются при гриппе и других острых респираторных заболеваниях. Препарат эффективен на ранних стадиях за­болевания, применяется местно. Интерфероны оказывают терапевтическое действие при гепатите В, герпесе, а также при злокачественных ново­образованиях.

 

№ 99 Иммунотерапия и иммунопрофилактика инфекционных болезней.

Иммунопрофилактика и иммунотерапия являются разделами иммунологии, которые изучают и разрабатывают способы и методы специфической профилактики, лечения и диа­гностики инфекционных и неинфекционных болезней с помощью иммунобиологических препаратов, оказывающих влияние на функ­цию иммунной системы, или действие которых основано на иммунологических принципах.

Иммунопрофилактика направлена на со­здание активного или пассивного иммуни­тета к возбудителю инфекционной болезни, его антигену с целью предупреждения возможного заболевания путем формирования невосприимчивости к ним организма.

Иммунотерапия направлена на лечение уже развившейся болезни, в ос­нове которой лежит нарушение функции им­мунной системы.

Иммунопрофилактика и иммунотерапия применяются, когда необходимо:

а)сформировать, создать специфический иммунитет, активизировать деятельность иммунной системы;

б) подавить активность звеньев иммунной системы;

в)нормализовать работу иммунной систе­мы.

Иммунопрофилактика и иммунотерапия применяются в про­филактике и лечении инфекционных болез­ней, аллергий, иммунопатологических


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.062 сек.)