ÀâòîÀâòîìàòèçàöèÿÀðõèòåêòóðàÀñòðîíîìèÿÀóäèòÁèîëîãèÿÁóõãàëòåðèÿÂîåííîå äåëîÃåíåòèêàÃåîãðàôèÿÃåîëîãèÿÃîñóäàðñòâîÄîìÄðóãîåÆóðíàëèñòèêà è ÑÌÈÈçîáðåòàòåëüñòâîÈíîñòðàííûå ÿçûêèÈíôîðìàòèêàÈñêóññòâîÈñòîðèÿÊîìïüþòåðûÊóëèíàðèÿÊóëüòóðàËåêñèêîëîãèÿËèòåðàòóðàËîãèêàÌàðêåòèíãÌàòåìàòèêàÌàøèíîñòðîåíèåÌåäèöèíàÌåíåäæìåíòÌåòàëëû è ÑâàðêàÌåõàíèêàÌóçûêàÍàñåëåíèåÎáðàçîâàíèåÎõðàíà áåçîïàñíîñòè æèçíèÎõðàíà ÒðóäàÏåäàãîãèêàÏîëèòèêàÏðàâîÏðèáîðîñòðîåíèåÏðîãðàììèðîâàíèåÏðîèçâîäñòâîÏðîìûøëåííîñòüÏñèõîëîãèÿÐàäèîÐåãèëèÿÑâÿçüÑîöèîëîãèÿÑïîðòÑòàíäàðòèçàöèÿÑòðîèòåëüñòâîÒåõíîëîãèèÒîðãîâëÿÒóðèçìÔèçèêàÔèçèîëîãèÿÔèëîñîôèÿÔèíàíñûÕèìèÿÕîçÿéñòâîÖåííîîáðàçîâàíèå×åð÷åíèåÝêîëîãèÿÝêîíîìåòðèêàÝêîíîìèêàÝëåêòðîíèêàÞðèñïóíäåíêöèÿ

References. 2000 Impulsivity, aggression, and serotonin: a molecular psychobiological perspective

×èòàéòå òàêæå:
  1. REFERENCES
  2. References
  3. References
  4. References
  5. References and further reading
  6. REFERENCES AND NOTES

1. ↵

1. Lesch K. P.,

2. Merschdorf U.

2000 Impulsivity, aggression, and serotonin: a molecular psychobiological perspective. Behav. Sci. Law 18, 581–604.doi:10.1002/1099-0798(200010)18:5<581::AID-BSL411>3.0.CO;2-L (doi:10.1002/1099-0798(200010)18:5<581::AID-BSL411>3.0.CO;2-L)

CrossRefMedlineWeb of Science

2. ↵

1. Vitiello B.,

2. Stoff D. M.

1997 Subtypes of aggression and their relevance to child psychiatry. J. Am. Acad. Child Adolesc. Psychiatry 36, 307–315.doi:10.1097/00004583-199703000-00008 (doi:10.1097/00004583-199703000-00008)

CrossRefMedlineWeb of Science

3. ↵

1. de Boer S. F.,

2. Caramaschi D.,

3. Natarajan D.,

4. Koolhaas J. M.

2009 The vicious cycle towards violence: focus on the negative feedback mechanisms of brain serotonin neurotransmission. Front Behav. Neurosci. 3, 52.

Medline

4. ↵

1. Miczek K. A.,

2. de Almeida R. M.,

3. Kravitz E. A.,

4. Rissman E. F.,

5. de Boer S. F.,

6. Raine A.

2007 Neurobiology of escalated aggression and violence. J. Neurosci. 27, 11 803–11 806.doi:10.1523/JNEUROSCI.3500-07.2007 (doi:10.1523/JNEUROSCI.3500-07.2007)

Abstract/FREE Full Text

5. ↵

1. Plomin R.,

2. Owen M. J.,

3. McGuffin P.

1994 The genetic basis of complex human behaviors. Science 264, 1733–1739.doi:10.1126/science.8209254 (doi:10.1126/science.8209254)

Abstract/FREE Full Text

6. ↵

1. Dahlstrom A.,

2. Fuxe K.

1964 Localization of monoamines in the lower brain stem. Experientia 20, 398–399.doi:10.1007/BF02147990 (doi:10.1007/BF02147990)

CrossRefMedlineWeb of Science

7. ↵

1. Baumgarten H. G.,

2. Göthert M.

3. Azmitia E. C.,

4. Whitaker-Azmitia P. M.

1997 Development and adult plasticity of serotonergic neurons and their target cells. In Serotonergic neurons and 5-HT receptors in the C.N.S. (eds Baumgarten H. G., Göthert M.), pp. 1–39. Berlin, Germany: Springer.

Search Google Scholar

8. ↵

1. Cote F.,

2. et al.

2003 Disruption of the nonneuronal tph1 gene demonstrates the importance of peripheral serotonin in cardiac function. Proc. Natl Acad. Sci. USA 100, 13 525–13 530.doi:10.1073/pnas.2233056100 (doi:10.1073/pnas.2233056100)

Abstract/FREE Full Text

9.

1. Walther D. J.,

2. et al.

2003 Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299, 76.doi:10.1126/science.1078197 (doi:10.1126/science.1078197)

FREE Full Text

10. ↵

1. Walther D. J.,

2. Bader M.

2003 A unique central tryptophan hydroxylase isoform. Biochem. Pharmacol. 66, 1673–1680.doi:10.1016/S0006-2952(03)00556-2 (doi:10.1016/S0006-2952(03)00556-2)

CrossRefMedlineWeb of Science

11. ↵

1. Gutknecht L.,

2. Kriegebaum C.,

3. Waider J.,

4. Schmitt A.,

5. Lesch K. P.

2009 Spatio-temporal expression of tryptophan hydroxylase isoforms in murine and human brain: convergent data from Tph2 knockout mice. Eur. Neuropsychopharmacol. 19, 266–282.doi:10.1016/j.euroneuro.2008.12.005 (doi:10.1016/j.euroneuro.2008.12.005)

CrossRefMedlineWeb of Science

12. ↵

1. Waider J.,

2. Araragi N.,

3. Gutknecht L.,

4. Lesch K. P.

2011 Tryptophan hydroxylase-2 (TPH2) in disorders of cognitive control and emotion regulation: a perspective. Psychoneuroendocrinology 36, 393–405.

CrossRefMedline

13. ↵

1. Serretti A.,

2. Chiesa A.,

3. Porcelli S.,

4. Han C.,

5. Patkar A. A.,

6. Lee S. J.,

7. Park M. H.,

8. Pae C. U.

2011 Influence of TPH2 variants on diagnosis and response to treatment in patients with major depression, bipolar disorder and schizophrenia. Psychiatry Res. 189, 26–32.

CrossRefMedlineWeb of Science

14. ↵

1. Gutknecht L.,

2. Waider J.,

3. Kraft S.,

4. Kriegebaum C.,

5. Holtmann B.,

6. Reif A.,

7. Schmitt A.,

8. Lesch K.-P.

2008 Deficiency of brain 5-HT synthesis but serotonergic neuron formation in Tph2 knockout mice. J. Neural Transm. A 115, 1127–1132.doi:10.1007/s00702-008-0096-6 (doi:10.1007/s00702-008-0096-6)

CrossRefMedlineWeb of Science

15. ↵

1. Dai J. X.,

2. et al.

2008 Enhanced contextual fear memory in central serotonin-deficient mice. Proc. Natl Acad. Sci. USA 105, 11 981–11 986.doi:10.1073/pnas.0801329105 (doi:10.1073/pnas.0801329105)

Abstract/FREE Full Text

16. ↵

1. Song N. N.,

2. et al.

2011 Adult raphe-specific deletion of Lmx1b leads to central serotonin deficiency. PLoS ONE 6, e15998.doi:10.1371/journal.pone.0015998 (doi:10.1371/journal.pone.0015998)

CrossRefMedline

17. ↵

1. Hendricks T. J.,

2. et al.

2003 Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron 37, 233–247.doi:10.1016/S0896-6273(02)01167-4 (doi:10.1016/S0896-6273(02)01167-4)

CrossRefMedlineWeb of Science

18. ↵

1. Kiyasova V.,

2. Fernandez S. P.,

3. Laine J.,

4. Stankovski L.,

5. Muzerelle A.,

6. Doly S.,

7. Gaspar P.

2011 A genetically defined morphologically and functionally unique subset of 5-HT neurons in the mouse raphe nuclei. J. Neurosci. 31, 2756–2768.doi:10.1523/JNEUROSCI.4080-10.2011 (doi:10.1523/JNEUROSCI.4080-10.2011)

Abstract/FREE Full Text

19. ↵

1. Beaulieu J. M.,

2. Zhang X.,

3. Rodriguiz R. M.,

4. Sotnikova T. D.,

5. Cools M. J.,

6. Wetsel W. C.,

7. Gainetdinov R. R.,

8. Caron M. G.

2008 Role of GSK3 beta in behavioral abnormalities induced by serotonin deficiency. Proc. Natl Acad. Sci. USA 105, 1333–1338.doi:10.1073/pnas.0711496105 (doi:10.1073/pnas.0711496105)

Abstract/FREE Full Text

20. ↵

1. Jacobsen J. P.,

2. Siesser W. B.,

3. Sachs B. D.,

4. Peterson S.,

5. Cools M. J.,

6. Setola V.,

7. Folgering J. H.,

8. Flik G.,

9. Caron M. G.

2011 Deficient serotonin neurotransmission and depression-like serotonin biomarker alterations in tryptophan hydroxylase 2 (Tph2) loss-of-function mice. Mol. Psychiatry.doi:10.1038/mp.2011.50 (doi:10.1038/mp.2011.50)

CrossRef

21. ↵

1. Alenina N.,

2. et al.

2009 Growth retardation and altered autonomic control in mice lacking brain serotonin. Proc. Natl Acad. Sci. USA 106, 10 332–10 337.

Abstract/FREE Full Text

22.

1. Kriegebaum C.,

2. Song N. N.,

3. Gutknecht L.,

4. Huang Y.,

5. Schmitt A.,

6. Reif A.,

7. Ding Y. Q.,

8. Lesch K. P.

2010 Brain-specific conditional and time-specific inducible Tph2 knockout mice possess normal serotonergic gene expression in the absence of serotonin during adult life. Neurochem. Int. 57, 512–517

CrossRefMedline

23. ↵

1. Savelieva K. V.,

2. Zhao S.,

3. Pogorelov V. M.,

4. Rajan I.,

5. Yang Q.,

6. Cullinan E.,

7. Lanthorn T. H.,

8. Bartolomucci A.

2008 Genetic disruption of both tryptophan hydroxylase genes dramatically reduces serotonin and affects behavior in models sensitive to antidepressants. PLoS ONE 3, e3301.doi:10.1371/journal.pone.0003301 (doi:10.1371/journal.pone.0003301)

CrossRefMedline

24. ↵

1. Gutknecht L.,

2. et al.

2007 Tryptophan hydroxylase-2 gene variation influences personality traits and disorders related to emotional dysregulation. Int. J. Neuropsychopharmacol. 10, 309–320.doi:10.1017/S1461145706007437 (doi:10.1017/S1461145706007437)

CrossRefMedlineWeb of Science

25. ↵

1. Homberg J. R.,

2. Lesch K. P.

2011 Looking on the bright side of serotonin transporter gene variation. Biol. Psychiatry 69, 513–519.doi:10.1016/j.biopsych.2010.09.024 (doi:10.1016/j.biopsych.2010.09.024)

CrossRefMedlineWeb of Science

26. ↵

1. Brown S. M.,

2. et al.

2005 A regulatory variant of the human tryptophan hydroxylase-2 gene biases amygdala reactivity. Mol. Psychiatry 10, 884–888, 805. (doi:10.1038/sj.mp.4001716)

CrossRefMedlineWeb of Science

27. ↵

1. Canli T.,

2. Congdon E.,

3. Gutknecht L.,

4. Constable R. T.,

5. Lesch K. P.

2005 Amygdala responsiveness is modulated by tryptophan hydroxylase-2 gene variation. J. Neural Transm. 112, 1479–1485.doi:10.1007/s00702-005-0391-4 (doi:10.1007/s00702-005-0391-4)

CrossRefMedlineWeb of Science

28. ↵

1. Booij L.,

2. Turecki G.,

3. Leyton M.,

4. Gravel P.,

5. Lopez De Lara C.,

6. Diksic M.,

7. Benkelfat C.

2011 Tryptophan hydroxylase(2) gene polymorphisms predict brain serotonin synthesis in the orbitofrontal cortex in humans. Mol Psychiatry.doi:10.1038/mp.2011.79 (doi:10.1038/mp.2011.79)

CrossRef

29. ↵

1. Armbruster D.,

2. Mueller A.,

3. Strobel A.,

4. Kirschbaum C.,

5. Lesch K. P.,

6. Brocke B.

2011 Influence of functional tryptophan hydroxylase 2 gene variation and sex on the startle response in children, young adults, and older adults. Biol. Psychol. 83, 214–221.doi:10.1016/j.biopsycho.2009.12.010 (doi:10.1016/j.biopsycho.2009.12.010)

CrossRef

30. ↵

1. Canli T.,

2. Congdon E.,

3. Todd Constable R.,

4. Lesch K. P.

2008 Additive effects of serotonin transporter and tryptophan hydroxylase-2 gene variation on neural correlates of affective processing. Biol. Psychol. 79, 118–125.

CrossRefMedlineWeb of Science

31. ↵

1. Herrmann M. J.,

2. et al.

2007 Additive effects of serotonin transporter and tryptophan hydroxylase-2 gene variation on emotional processing. Cereb. Cortex 17, 1160–1163.doi:10.1093/cercor/bhl026 (doi:10.1093/cercor/bhl026)

Abstract/FREE Full Text

32. ↵

1. Baehne C. G.,

2. Ehlis A. C.,

3. Plichta M. M.,

4. Conzelmann A.,

5. Pauli P.,

6. Jacob C.,

7. Gutknecht L,

8. Lesch K.-P,

9. Fallgatter A. J.

2009 Tph2 gene variants modulate response control processes in adult ADHD patients and healthy individuals. Mol. Psychiatry 14, 1032–1039.doi:10.1038/mp.2008.39 (doi:10.1038/mp.2008.39)

CrossRefMedlineWeb of Science

33. ↵

1. Bach-Mizrachi H.,

2. Underwood M. D.,

3. Kassir S. A.,

4. Bakalian M. J.,

5. Sibille E.,

6. Tamir H.,

7. Mann J. J.,

8. Arango V.

2006 Neuronal tryptophan hydroxylase mRNA expression in the human dorsal and median raphe nuclei: major depression and suicide. Neuropsychopharmacology 31, 814–824.doi:10.1038/sj.npp.1300897 (doi:10.1038/sj.npp.1300897)

CrossRefMedlineWeb of Science

34. ↵

1. Bach-Mizrachi H.,

2. Underwood M. D.,

3. Tin A.,

4. Ellis S. P.,

5. Mann J. J.,

6. Arango V.

2008 Elevated expression of tryptophan hydroxylase-2 mRNA at the neuronal level in the dorsal and median raphe nuclei of depressed suicides. Mol. Psychiatry 13, 507–513.

CrossRefMedlineWeb of Science

35. ↵

1. Boldrini M.,

2. Underwood M. D.,

3. Mann J. J.,

4. Arango V.

2005 More tryptophan hydroxylase in the brainstem dorsal raphe nucleus in depressed suicides. Brain Res. 1041, 19–28.doi:10.1016/j.brainres.2005.01.083 (doi:10.1016/j.brainres.2005.01.083)

CrossRefMedlineWeb of Science

36.

1. Bonkale W. L.,

2. Turecki G.,

3. Austin M. C.

2006 Increased tryptophan hydroxylase immunoreactivity in the dorsal raphe nucleus of alcohol-dependent, depressed suicide subjects is restricted to the dorsal subnucleus. Synapse 60, 81–85.doi:10.1002/syn.20278 (doi:10.1002/syn.20278)

CrossRefMedlineWeb of Science

37. ↵

1. Underwood M. D.,

2. Arango V.,

3. Bakalian M. J.,

4. Ruggiero D. A.,

5. Mann J. J.

1999 Dorsal raphe nucleus serotonergic neurons innervate the rostral ventrolateral medulla in rat. Brain Res. 824, 45–55.doi:10.1016/S0006-8993(99)01181-6 (doi:10.1016/S0006-8993(99)01181-6)

CrossRefMedlineWeb of Science

38. ↵

1. Lesch K. P.

2011 When the serotonin transporter gene meets adversity: the contribution of animal models to understanding epigenetic mechanisms in affective disorders and resilience. Curr. Top. Behav. Neurosci. 7, 251–280.doi:10.1007/7854_2010_109 (doi:10.1007/7854_2010_109)

CrossRefMedline

39. ↵

1. Feinberg N. A.,

2. et al.

2010 Proang compulsive and impulsive behaviors, from animal models to endophenotypes: a narrative review. Neuropsychopharmacology 35, 591–604.

CrossRefMedlineWeb of Science

40. ↵

1. Jacob C. P.,

2. et al.

2007 Co-morbidity of adult attention-deficit/hyperactivity disorder with focus on personality traits and related disorders in a tertiary referral centre. Eur. Arch. Psychiatry Clin. Neurosci. 257, 309–317.

CrossRefMedline

41. ↵

1. McKinney J.,

2. Johansson S.,

3. Halmoy A.,

4. Dramsdahl M.,

5. Winge I.,

6. Knappskog P. M.,

7. Haavik J

2008 A loss-of-function mutation in tryptophan hydroxylase 2 segregating with attention-deficit/hyperactivity disorder. Mol. Psychiatry 13, 365–367.doi:10.1038/sj.mp.4002152 (doi:10.1038/sj.mp.4002152)

CrossRefMedlineWeb of Science

42.

1. McKinney J. A.,

2. Turel B.,

3. Winge I.,

4. Knappskog P. M.,

5. Haavik J.

2009 Functional properties of missense variants of human tryptophan hydroxylase 2. Hum. Mutat. 30, 787–794.doi:10.1002/humu.20956 (doi:10.1002/humu.20956)

CrossRefMedlineWeb of Science

43. ↵

1. Walitza S.,

2. et al.

2005 Transmission disequilibrium of polymorphic variants in the tryptophan hydroxylase-2 gene in attention-deficit/hyperactivity disorder. Mol. Psychiatry. 10, 1126–1132.doi:10.1038/sj.mp.4001734 (doi:10.1038/sj.mp.4001734)

CrossRefMedlineWeb of Science

44. ↵

1. Mossner R.,

2. et al.

2006 Transmission disequilibrium of polymorphic variants in the tryptophan hydroxylase-2 gene in children and adolescents with obsessive-compulsive disorder. Int. J. Neuropsychopharmacol. 9, 437–442.doi:10.1017/S1461145705005997 (doi:10.1017/S1461145705005997)

CrossRefMedlineWeb of Science

45. ↵

1. Johansson S.,

2. et al.

2010 Common variants in the TPH1 and TPH2 regions are not associated with persistent ADHD in a combined sample of 1,636 adult cases and 1,923 controls from four European populations. Am. J. Med. Genet. B Neuropsychiatr. Genet. 153B, 1008–1015.

Search Google Scholar

46. ↵

1. Gutknecht L.,

2. et al.

Submitted. Brain serotonin deficiency promotes resilience to chronic stress via sex-specific adaptive mechanisms.

Search Google Scholar

47. ↵

1. Zhang X.,

2. Beaulieu J. M.,

3. Sotnikova T. D.,

4. Gainetdinov R. R.,

5. Caron M. G.

2004 Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science 305, 217.doi:10.1126/science.1097540 (doi:10.1126/science.1097540)

Abstract/FREE Full Text

48. ↵

1. Osipova D. V.,

2. Kulikov A. V.,

3. Popova N. K.

2009 C1473G polymorphism in mouse tph2 gene is linked to tryptophan hydroxylase-2 activity in the brain, intermale aggression, and depressive-like behavior in the forced swim test. J. Neurosci. Res. 87, 1168–1174.doi:10.1002/jnr.21928 (doi:10.1002/jnr.21928)

CrossRefMedline

49. ↵

1. Siesser W. B.,

2. Zhang X.,

3. Jacobsen J. P.,

4. Sotnikova T. D.,

5. Gainetdinov R. R.,

6. Caron M. G.

2010 Tryptophan hydroxylase 2 genotype determines brain serotonin synthesis but not tissue content in C57Bl/6 and BALB/c congenic mice. Neurosci. Lett. 481, 6–11.doi:10.1016/j.neulet.2010.06.035 (doi:10.1016/j.neulet.2010.06.035)

CrossRefMedline

50. ↵

1. Tenner K.,

2. Qadri F.,

3. Bert B.,

4. Voigt J. P.,

5. Bader M.

2008 The mTPH2 C1473G single nucleotide polymorphism is not responsible for behavioural differences between mouse strains. Neurosci. Lett. 431, 21–25.doi:10.1016/j.neulet.2007.11.012 (doi:10.1016/j.neulet.2007.11.012)

CrossRefMedline

51. ↵

1. Ding Y. Q.,

2. Marklund U.,

3. Yuan W.,

4. Yin J.,

5. Wegman L.,

6. Ericson J.,

7. Deneris E.,

8. Johnson R. L,

9. Chen Z.-F.

2003 Lmx1b is essential for the development of serotonergic neurons. Nat. Neurosci. 6, 933–938.doi:10.1038/nn1104 (doi:10.1038/nn1104)

CrossRefMedlineWeb of Science

52. ↵

1. Lesch K. P.

2005 Serotonergic gene inactivation in mice: models for anxiety and aggression? Novartis Found Symp. 268, 111–140.

CrossRefMedline

53. ↵

1. Schaefer T. L.,

2. Vorhees C. V.,

3. Williams M. T.

2009 Mouse plasmacytoma-expressed transcript 1 knock out induced 5-HT disruption results in a lack of cognitive deficits and an anxiety phenotype complicated by hypoactivity and defensiveness. Neuroscience 164, 1431–1443.doi:10.1016/j.neuroscience.2009.09.059 (doi:10.1016/j.neuroscience.2009.09.059)

CrossRefMedlineWeb of Science

54. ↵

1. Andrade T. G.,

2. Graeff F. G.

2001 Effect of electrolytic and neurotoxic lesions of the median raphe nucleus on anxiety and stress. Pharmacol. Biochem. Behav. 70, 1–14.doi:10.1016/S0091-3057(01)00512-3 (doi:10.1016/S0091-3057(01)00512-3)

CrossRefMedlineWeb of Science

55.

1. Sziray N.,

2. Kuki Z.,

3. Nagy K. M.,

4. Marko B.,

5. Kompagne H.,

6. Levay G.

2010 Effects of single and simultaneous lesions of serotonergic and noradrenergic pathways on open-space and bright-space anxiety-like behavior in two animal models. Behav. Brain Res. 209, 93–98.doi:10.1016/j.bbr.2010.01.019 (doi:10.1016/j.bbr.2010.01.019)

CrossRefMedlineWeb of Science

56.

1. Netto S. M.,

2. Silveira R.,

3. Coimbra N. C.,

4. Joca S. R.,

5. Guimaraes F. S.

2002 Anxiogenic effect of median raphe nucleus lesion in stressed rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 26, 1135–1141.doi:10.1016/S0278-5846(02)00248-8 (doi:10.1016/S0278-5846(02)00248-8)

CrossRefMedline

57. ↵

1. Rex A.,

2. Thomas H.,

3. Hortnagl H.,

4. Voits M.,

5. Fink H.

2003 Behavioural and microdialysis study after neurotoxic lesion of the dorsal raphe nucleus in rats. Pharmacol. Biochem. Behav. 74, 587–593.doi:10.1016/S0091-3057(02)01043-2 (doi:10.1016/S0091-3057(02)01043-2)

CrossRefMedline

58. ↵

1. McNally G. P.,

2. Johansen J. P.,

3. Blair H. T.

2011 Placing prediction into the fear circuit. Trends Neurosci. 34, 283–292.doi:10.1016/j.tins.2011.03.005 (doi:10.1016/j.tins.2011.03.005)

CrossRefMedlineWeb of Science

59. ↵

1. Graeff F. G.,

2. Viana M. B.,

3. Mora P. O.

1996 Opposed regulation by dorsal raphe nucleus 5-HT pathways of two types of fear in the elevated T-maze. Pharmacol. Biochem. Behav. 53, 171–177.doi:10.1016/0091-3057(95)02012-8 (doi:10.1016/0091-3057(95)02012-8)

CrossRefMedlineWeb of Science

60. ↵

1. Graeff F. G.,

2. Zangrossi H. Jr.

2010 The dual role of serotonin in defense and the mode of action of antidepressants on generalized anxiety and panic disorders. Central Nervous System Agents Med. Chem. 10, 207–217.

Search Google Scholar

61. ↵

1. Blanchard D. C.,

2. Griebel G.,

3. Blanchard R. J.

2003 The mouse defense test battery: pharmacological and behavioral assays for anxiety and panic. Eur. J. Pharmacol. 463, 97–116.doi:10.1016/S0014-2999(03)01276-7 (doi:10.1016/S0014-2999(03)01276-7)

CrossRefMedlineWeb of Science

62. ↵

1. Walker D. L.,

2. Miles L. A.,

3. Davis M.

2009 Selective participation of the bed nucleus of the stria terminalis and CRF in sustained anxiety-like versus phasic fear-like responses. Prog. Neuropsychopharmacol. Biol. Psychiatry 33, 1291–1308.doi:10.1016/j.pnpbp.2009.06.022 (doi:10.1016/j.pnpbp.2009.06.022)

CrossRefMedline

63. ↵

1. Davis M.,

2. Shi C.

2000 The amygdala. Curr. Biol. 10, R131.doi:10.1016/S0960-9822(00)00345-6 (doi:10.1016/S0960-9822(00)00345-6)

CrossRefMedlineWeb of Science

64. ↵

1. McDonald A. J.

1998 Cortical pathways to the mammalian amygdala. Prog. Neurobiol. 55, 257–332.doi:10.1016/S0301-0082(98)00003-3 (doi:10.1016/S0301-0082(98)00003-3)

CrossRefMedlineWeb of Science

65. ↵

1. Turner B. H.,

2. Herkenham M.

1991 Thalamoamygdaloid projections in the rat: a test of the amygdala's role in sensory processing. J. Comp. Neurol. 313, 295–325.doi:10.1002/cne.903130208 (doi:10.1002/cne.903130208)

CrossRefMedlineWeb of Science

66. ↵

1. Muller J. F.,

2. Mascagni F.,

3. McDonald A. J.

2007 Serotonin-immunoreactive axon terminals innervate pyramidal cells and interneurons in the rat basolateral amygdala. J. Comp. Neurol. 505, 314–335.doi:10.1002/cne.21486 (doi:10.1002/cne.21486)

CrossRefMedlineWeb of Science

67. ↵

1. Sah P.,

2. Westbrook R. F.,

3. Luthi A.

2008 Fear conditioning and long-term potentiation in the amygdala: what really is the connection? Ann. N. Y. Acad. Sci. 1129, 88–95.doi:10.1196/annals.1417.020 (doi:10.1196/annals.1417.020)

CrossRefMedlineWeb of Science

68. ↵

1. Blair H. T.,

2. Schafe G. E.,

3. Bauer E. P.,

4. Rodrigues S. M.,

5. LeDoux J. E.

2001 Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. Learn. Mem. 8, 229–242.doi:10.1101/lm.30901 (doi:10.1101/lm.30901)

Abstract/FREE Full Text

69. ↵

1. Schafe G. E.,

2. Nader K.,

3. Blair H. T.,

4. LeDoux J. E.

2001 Memory consolidation of Pavlovian fear conditioning: a cellular and molecular perspective. Trends Neurosci. 24, 540–546.doi:10.1016/S0166-2236(00)01969-X (doi:10.1016/S0166-2236(00)01969-X)

CrossRefMedlineWeb of Science

70. ↵

1. Ehrlich I.,

2. Humeau Y.,

3. Grenier F.,

4. Ciocchi S.,

5. Herry C.,

6. Luthi A.

2009 Amygdala inhibitory circuits and the control of fear memory. Neuron 62, 757–771.doi:10.1016/j.neuron.2009.05.026 (doi:10.1016/j.neuron.2009.05.026)

CrossRefMedlineWeb of Science

71. ↵

1. Stutzmann G. E.,

2. LeDoux J. E.

1999 GABAergic antagonists block the inhibitory effects of serotonin in the lateral amygdala: a mechanism for modulation of sensory inputs related to fear conditioning. J. Neurosci. 19, RC8.

Abstract/FREE Full Text

72. ↵

1. Harro J.,

2. Tonissaar M.,

3. Eller M.,

4. Kask A.,

5. Orel L.

2001 Chronic variable stress and partial 5-HT denervation by parachloroamphetamine treatment in the rat: effects on behavior and monoamine neurochemistry. Brain Res. 899, 227–239.doi:10.1016/S0006-8993(01)02256-9 (doi:10.1016/S0006-8993(01)02256-9)

CrossRefMedlineWeb of Science

73. ↵

1. Amat J.,

2. Paul E.,

3. Watkins L. R.,

4. Maier S. F.

2008 Activation of the ventral medial prefrontal cortex during an uncontrollable stressor reproduces both the immediate and long-term protective effects of behavioral control. Neuroscience 154, 1178–1186.doi:10.1016/j.neuroscience.2008.04.005 (doi:10.1016/j.neuroscience.2008.04.005)

CrossRefMedlineWeb of Science

74.

1. Baratta M. V.,

2. Zarza C. M.,

3. Gomez D. M.,

4. Campeau S.,

5. Watkins L. R.,

6. Maier S. F.

2009 Selective activation of dorsal raphe nucleus-projecting neurons in the ventral medial prefrontal cortex by controllable stress. Eur. J. Neurosci. 30, 1111–1116.doi:10.1111/j.1460-9568.2009.06867.x (doi:10.1111/j.1460-9568.2009.06867.x)

CrossRefMedline

75. ↵

1. Christianson J. P.,

2. Paul E. D.,

3. Irani M.,

4. Thompson B. M.,

5. Kubala K. H.,

6. Yirmiya R.,

7. Watkins L. R.,

8. Maier S. F.

2008 The role of prior stressor controllability and the dorsal raphe nucleus in sucrose preference and social exploration. Behav. Brain Res. 193, 87–93.doi:10.1016/j.bbr.2008.04.024 (doi:10.1016/j.bbr.2008.04.024)

CrossRefMedlineWeb of Science

76. ↵

1. Heiming R. S.,

2. Jansen F.,

3. Lewejohann L.,

4. Kaiser S.,

5. Schmitt A.,

6. Lesch K. P.,

7. Sachser N.

2009 Living in a dangerous world: the shaping of behavioral profile by early environment and 5-HTT genotype. Front Behav. Neurosci. 3, 26.

Medline

77. ↵

1. Parihar V. K.,

2. Hattiangady B.,

3. Kuruba R.,

4. Shuai B.,

5. Shetty A. K.

2011 Predictable chronic mild stress improves mood, hippocampal neurogenesis and memory. Mol. Psychiatry 16, 171–183.doi:10.1038/mp.2009.130 (doi:10.1038/mp.2009.130)

CrossRefMedlineWeb of Science

78. ↵

1. Gross C.,

2. Hen R.

2004 The developmental origins of anxiety. Nat. Rev. Neurosci. 5, 545–552.doi:10.1038/nrn1429 (doi:10.1038/nrn1429)

MedlineWeb of Science

79. ↵

1. Graeff F. G.,

2. Guimaraes F. S.,

3. De Andrade T. G.,

4. Deakin J. F.

1996 Role of 5-HT in stress, anxiety, and depression. Pharmacol. Biochem. Behav. 54, 129–141.doi:10.1016/0091-3057(95)02135-3 (doi:10.1016/0091-3057(95)02135-3)

CrossRefMedlineWeb of Science

80. ↵

1. Di Pino G.,

2. Moessner R.,

3. Lesch P.,

4. Lauder J.,

5. Persico A.

2004 Roles for serotonin in neurodevelopment: more than just neural transmission. Curr. Neuropharmacol. 2, 403–418.doi:10.2174/1570159043359495 (doi:10.2174/1570159043359495)

CrossRef

81.

1. Gaspar P.,

2. Cases O.,

3. Maroteaux L.

2003 The developmental role of serotonin: news from mouse molecular genetics. Nat. Rev. Neurosci. 4, 1002–1012.doi:10.1038/nrn1256 (doi:10.1038/nrn1256)

CrossRefMedlineWeb of Science

82. ↵

1. Bonnin A.,

2. Torii M.,

3. Wang L.,

4. Rakic P.,

5. Levitt P.

2007 Serotonin modulates the response of embryonic thalamocortical axons to netrin-1. Nat. Neurosci. 10, 588–597.doi:10.1038/nn1896 (doi:10.1038/nn1896)

CrossRefMedlineWeb of Science

83. ↵

1. Zhao Z. Q.,

2. Scott M.,

3. Chiechio S.,

4. Wang J. S.,

5. Renner K. J.,

6. Gereau R. W. T.,

7. Johnson R. L.,

8. Deneris E. S.,

9. Chen Z.-F.

2006 Lmx1b is required for maintenance of central serotonergic neurons and mice lacking central serotonergic system exhibit normal locomotor activity. J. Neurosci. 26, 12 781–12 788.doi:10.1523/JNEUROSCI.4143-06.2006 (doi:10.1523/JNEUROSCI.4143-06.2006)

Abstract/FREE Full Text

84. ↵

1. Lynn-Bullock C. P.,

2. Welshhans K.,

3. Pallas S. L.,

4. Katz P. S.

2004 The effect of oral 5-HTP administration on 5-HTP and 5-HT immunoreactivity in monoaminergic brain regions of rats. J. Chem. Neuroanat. 27, 129–138.doi:10.1016/j.jchemneu.2004.02.003 (doi:10.1016/j.jchemneu.2004.02.003)

CrossRefMedlineWeb of Science

85. ↵

1. Brady L. S.,

2. Gold P. W.,

3. Herkenham M.,

4. Lynn A. B.,

5. Whitfield H. J. Jr.

1992 The antidepressants fluoxetine, idazoxan and phenelzine alter corticotropin-releasing hormone and tyrosine hydroxylase mRNA levels in rat brain: therapeutic implications. Brain Res. 572, 117–125.doi:10.1016/0006-8993(92)90459-M (doi:10.1016/0006-8993(92)90459-M)

CrossRefMedlineWeb of Science

86. ↵

1. Heydendael W.,

2. Jacobson L.

2010 Widespread hypothalamic–pituitary–adrenocortical axis-relevant and mood-relevant effects of chronic fluoxetine treatment on glucocorticoid receptor gene expression in mice. Eur. J. Neurosci. 31, 892–902.doi:10.1111/j.1460-9568.2010.07131.x (doi:10.1111/j.1460-9568.2010.07131.x)

CrossRefMedline

87. ↵

1. Pudovkina O. L.,

2. Cremers T. I.,

3. Westerink B. H.

2002 The interaction between the locus coeruleus and dorsal raphe nucleus studied with dual-probe microdialysis. Eur. J. Pharmacol. 445, 37–42.doi:10.1016/S0014-2999(02)01663-1 (doi:10.1016/S0014-2999(02)01663-1)

CrossRefMedline

88. ↵

1. Mongeau R.,

2. Blier P.,

3. de Montigny C.

1997 The serotonergic and noradrenergic systems of the hippocampus: their interactions and the effects of antidepressant treatments. Brain Res. Brain Res. Rev. 23, 145–195.doi:10.1016/S0165-0173(96)00017-3 (doi:10.1016/S0165-0173(96)00017-3)

CrossRefMedline

89. ↵

1. Riccio O.,

2. Potter G.,

3. Walzer C.,

4. Vallet P.,

5. Szabo G.,

6. Vutskits L.,

7. Kiss J. Z.,

8. Dayer A. G.

2009 Excess of serotonin affects embryonic interneuron migration through activation of the serotonin receptor 6. Mol. Psychiatry 14, 280–290.doi:10.1038/mp.2008.89 (doi:10.1038/mp.2008.89)

CrossRefMedlineWeb of Science

90. ↵

1. Vitalis T.,

2. Cases O.,

3. Passemard S.,

4. Callebert J.,

5. Parnavelas J. G.

2007 Embryonic depletion of serotonin affects cortical development. Eur. J. Neurosci. 26, 331–344.doi:10.1111/j.1460-9568.2007.05661.x (doi:10.1111/j.1460-9568.2007.05661.x)

CrossRefMedlineWeb of Science

91. ↵

1. Pape H. C.,

2. Pare D.

2010 Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol. Rev. 90, 419–463.doi:10.1152/physrev.00037.2009 (doi:10.1152/physrev.00037.2009)

Abstract/FREE Full Text

92. ↵

1. Molliver M. E.

1987 Serotonergic neuronal systems: what their anatomic organization tells us about function. J. Clin. Psychopharmacol. 7 (Suppl. 6), 3S–23S.

CrossRefMedline

93. ↵

1. McDonald A. J.,

2. Mascagni F.

2007 Neuronal localization of 5-HT type 2A receptor immunoreactivity in the rat basolateral amygdala. Neuroscience 146, 306–320.doi:10.1016/j.neuroscience.2007.01.047 (doi:10.1016/j.neuroscience.2007.01.047)

CrossRefMedlineWeb of Science

94. ↵

1. Muller J. F.,

2. Mascagni F.,

3. McDonald A. J.

2005 Coupled networks of parvalbumin-immunoreactive interneurons in the rat basolateral amygdala. J. Neurosci. 25, 7366–7376.doi:10.1523/JNEUROSCI.0899-05.2005 (doi:10.1523/JNEUROSCI.0899-05.2005)

Abstract/FREE Full Text

95. ↵

1. Wright D. E.,

2. Seroogy K. B.,

3. Lundgren K. H.,

4. Davis B. M.,

5. Jennes L.

1995 Comparative localization of serotonin1A, 1C, and 2 receptor subtype mRNAs in rat brain. J. Comp. Neurol. 351, 357–373.doi:10.1002/cne.903510304 (doi:10.1002/cne.903510304)

CrossRefMedlineWeb of Science

96. ↵

1. Hale M. W.,

2. Johnson P. L.,

3. Westerman A. M.,

4. Abrams J. K.,

5. Shekhar A.,

6. Lowry C. A.

2010 Multiple anxiogenic drugs recruit a parvalbumin-containing subpopulation of GABAergic interneurons in the basolateral amygdala. Prog. Neuropsychopharmacol. Biol. Psychiatry 34, 1285–1293.doi:10.1016/j.pnpbp.2010.07.012 (doi:10.1016/j.pnpbp.2010.07.012)

CrossRefMedline

97. ↵

1. Chowdhury N.,

2. Quinn J. J.,

3. Fanselow M. S.

2005 Dorsal hippocampus involvement in trace fear conditioning with long, but not short, trace intervals in mice. Behav. Neurosci. 119, 1396–1402.doi:10.1037/0735-7044.119.5.1396 (doi:10.1037/0735-7044.119.5.1396)

CrossRefMedlineWeb of Science

98.

1. Fendt M.,

2. Fanselow M. S.,

3. Koch M.

2005 Lesions of the dorsal hippocampus block trace fear conditioned potentiation of startle. Behav. Neurosci. 119, 834–838.doi:10.1037/0735-7044.119.3.834 (doi:10.1037/0735-7044.119.3.834)

CrossRefMedline

99. ↵

1. Quinn J. J.,

2. Wied H. M.,

3. Ma Q. D.,

4. Tinsley M. R.,

5. Fanselow M. S.

2008 Dorsal hippocampus involvement in delay fear conditioning depends upon the strength of the tone-footshock association. Hippocampus 18, 640–654.doi:10.1002/hipo.20424 (doi:10.1002/hipo.20424)

CrossRefMedlineWeb of Science

100. ↵

1. Fanselow M. S.,

2. Dong H. W.

2010 Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65, 7–19.doi:10.1016/j.neuron.2009.11.031 (doi:10.1016/j.neuron.2009.11.031)

CrossRefMedlineWeb of Science

101. ↵

1. Jinno S.,

2. Kosaka T.

2010 Stereological estimation of numerical densities of glutamatergic principal neurons in the mouse hippocampus. Hippocampus 20, 829–840.

MedlineWeb of Science

102. ↵

1. Waider J.,

2. Proft F.,

3. Langlhofer G.,

4. Lesch K. P.,

5. Gutknecht L.

Submitted. GABA concentration and interneuron subpopulations are differentially altered by brain serotonin deficiency in tryptophan hydroxylase-2 (Tph2) knockout mice.

Search Google Scholar

103. ↵

1. Davis M.,

2. Rainnie D.,

3. Cassell M.

1994 Neurotransmission in the rat amygdala related to fear and anxiety. Trends Neurosci. 17, 208–214.doi:10.1016/0166-2236(94)90106-6 (doi:10.1016/0166-2236(94)90106-6)

CrossRefMedlineWeb of Science

104. ↵

1. Stork O.,

2. Ji F.-Y.,

3. Kaneko K.,

4. Stork S.,

5. Yoshinobu Y.,

6. Moriya T.,

7. Shibata S.,

8. Obata K.

2000 Postnatal development of a GABA deficit and disturbance of neural functions in mice lacking GAD65. Brain Res. 865, 45–58.doi:10.1016/S0006-8993(00)02206-X (doi:10.1016/S0006-8993(00)02206-X)

CrossRefMedlineWeb of Science

105. ↵

1. Tasan R. O.,

2. Bukovac A.,

3. Peterschmitt Y. N.,

4. Sartori S. B.,

5. Landgraf R.,

6. Singewald N.,

7. Sperk G.

2011 Altered GABA transmission in a mouse model of increased trait anxiety. Neuroscience 183, 71–80.doi:10.1016/j.neuroscience.2011.03.051 (doi:10.1016/j.neuroscience.2011.03.051)

CrossRefMedlineWeb of Science

106. ↵

1. Del Arco A.,

2. Mora F.

2009 Neurotransmitters and prefrontal cortex-limbic system interactions: implications for plasticity and psychiatric disorders. J. Neural Transm. 116, 941–952.doi:10.1007/s00702-009-0243-8 (doi:10.1007/s00702-009-0243-8)

CrossRefMedlineWeb of Science

107. ↵

1. Likhtik E.,

2. Popa D.,

3. Apergis-Schoute J.,

4. Fidacaro G. A.,

5. Pare D.

2008 Amygdala intercalated neurons are required for expression of fear extinction. Nature 454, 642–645.doi:10.1038/nature07167 (doi:10.1038/nature07167)

CrossRefMedlineWeb of Science

108. ↵

1. Puig M. V.,

2. Watakabe A.,

3. Ushimaru M.,

4. Yamamori T.,

5. Kawaguchi Y.

2010 Serotonin modulates fast-spiking interneuron and synchronous activity in the rat prefrontal cortex through 5-HT1A and 5-HT2A receptors. J. Neurosci. 30, 2211–2222.doi:10.1523/JNEUROSCI.3335-09.2010 (doi:10.1523/JNEUROSCI.3335-09.2010)

Abstract/FREE Full Text

109. ↵

1. Freund T. F.,

2. Buzsaki G.

1996 Interneurons of the hippocampus. Hippocampus 6, 347–470.doi:10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I (doi:10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I)

CrossRefMedlineWeb of Science

110. ↵

1. Spampanato J.,

2. Polepalli J.,

3. Sah P.

2011 Interneurons in the basolateral amygdala. Neuropharmacology 60, 765–773.doi:10.1016/j.neuropharm.2010.11.006 (doi:10.1016/j.neuropharm.2010.11.006)

CrossRefMedlineWeb of Science

111. ↵

1. Sosulina L.,

2. Graebenitz S.,

3. Pape H. C.

2010 GABAergic interneurons in the mouse lateral amygdala: a classification study. J. Neurophysiol. 104, 617–626.doi:10.1152/jn.00207.2010 (doi:10.1152/jn.00207.2010)

Abstract/FREE Full Text

112. ↵

1. Varga V.,

2. et al.

2009 Fast synaptic subcortical control of hippocampal circuits. Science 326, 449–453.doi:10.1126/science.1178307 (doi:10.1126/science.1178307)

Abstract/FREE Full Text

113. ↵

1. Hensler J. G.

2006 Serotonergic modulation of the limbic system. Neurosci. Biobehav. Rev. 30, 203–214.doi:10.1016/j.neubiorev.2005.06.007 (doi:10.1016/j.neubiorev.2005.06.007)

CrossRefMedlineWeb of Science

114. ↵

1. Mamounas L. A.,

2. Mullen C. A.,

3. O'Hearn E.,

4. Molliver M. E.

1991 Dual serotoninergic projections to forebrain in the rat: morphologically distinct 5-HT axon terminals exhibit differential vulnerability to neurotoxic amphetamine derivatives. J. Comp. Neurol. 314, 558–586.doi:10.1002/cne.903140312 (doi:10.1002/cne.903140312)

CrossRefMedlineWeb of Science

115. ↵

1. Gulyas A. I.,

2. Acsady L.,

3. Freund T. F.

1999 Structural basis of the cholinergic and serotonergic modulation of GABAergic neurons in the hippocampus. Neurochem. Int. 34, 359–372.doi:10.1016/S0197-0186(99)00041-8 (doi:10.1016/S0197-0186(99)00041-8)

CrossRefMedlineWeb of Science

116. ↵

1. Buzsaki G.,

2. Draguhn A.

2004 Neuronal oscillations in cortical networks. Science 304, 1926–1929.doi:10.1126/science.1099745 (doi:10.1126/science.1099745)

Abstract/FREE Full Text

117.

1. Klausberger T.

2009 GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus. Eur. J. Neurosci. 30, 947–957.doi:10.1111/j.1460-9568.2009.06913.x (doi:10.1111/j.1460-9568.2009.06913.x)

CrossRefMedlineWeb of Science

118. ↵

1. Klausberger T.,

2. Marton L. F.,

3. O'Neill J.,

4. Huck J. H.,

5. Dalezios Y.,

6. Fuentealba P.,

7. Suen W. Y.,

8. Papp E.,

9. Kaneko T.

2005 Complementary roles of cholecystokinin- and parvalbumin-expressing GABAergic neurons in hippocampal network oscillations. J. Neurosci. 25, 9782–9793.doi:10.1523/JNEUROSCI.3269-05.2005 (doi:10.1523/JNEUROSCI.3269-05.2005)

Abstract/FREE Full Text

119. ↵

1. Evrard A.,

2. et al.

2002 Altered regulation of the 5-HT system in the brain of MAO-A knock-out mice. Eur. J. Neurosci. 215, 841–851.doi:10.1046/j.1460-9568.2002.01917.x (doi:10.1046/j.1460-9568.2002.01917.x)

CrossRef

120. ↵

1. Lanoir J.,

2. Hilaire G.,

3. Seif I.

2006 Reduced density of functional 5-HT1A receptors in the brain, medulla and spinal cord of monoamine oxidase: a knockout mouse neonates. J. Comp. Neurol. 495, 607–623.doi:10.1002/cne.20916 (doi:10.1002/cne.20916)

CrossRefMedlineWeb of Science

121. ↵

1. Murphy D. L.,

2. Lesch K. P.

2008 Targeting the murine serotonin transporter: insights into human neurobiology. Nat. Rev. Neurosci. 9, 85–96.doi:10.1038/nrn2284 (doi:10.1038/nrn2284)

CrossRefMedlineWeb of Science

122. ↵

1. Lesch K. P.,

2. Wiesmann M.,

3. Hoh A.,

4. Muller T.,

5. Disselkamp-Tietze J.,

6. Osterheider M.,

7. Schulte H. M.

1992 5-HT1A receptor–effector system responsivity in panic disorder. Psychopharmacology (Berl.) 106, 111–117.doi:10.1007/BF02253597 (doi:10.1007/BF02253597)

CrossRefMedline

123.

1. Lesch K. P.,

2. Hoh A.,

3. Schulte H. M.,

4. Osterheider M.,

5. Muller T.

1991 Long-term fluoxetine treatment decreases 5-HT1A receptor responsivity in obsessive-compulsive disorder. Psychopharmacology (Berl.) 105, 415–420.doi:10.1007/BF02244438 (doi:10.1007/BF02244438)

CrossRefMedline

124. ↵

1. Lesch K. P.,

2. Mayer S.,

3. Disselkamp-Tietze J.,

4. Hoh A.,

5. Wiesmann M.,

6. Osterheider M.,

7. Schulte H. M.

1990 5-HT1A receptor responsivity in unipolar depression. Evaluation of ipsapirone-induced ACTH and cortisol secretion in patients and controls. Biol. Psychiatry 28, 620–628.doi:10.1016/0006-3223(90)90400-V (doi:10.1016/0006-3223(90)90400-V)

CrossRefMedlineWeb of Science

125. ↵

1. Fernandes C.,

2. McKittrick C. R.,

3. File S. E.,

4. McEwen B. S.

1997 Decreased 5-HT1A and increased 5-HT2A receptor binding after chronic corticosterone associated with a behavioural indication of depression but not anxiety. Psychoneuroendocrinology 22, 477–491.doi:10.1016/S0306-4530(97)00052-8 (doi:10.1016/S0306-4530(97)00052-8)

CrossRefMedlineWeb of Science

126. ↵

1. Lopez J. F.,

2. Chalmers D. T.,

3. Little K. Y.,

4. Watson S. J.

1998 A.E. Bennett Research Award. Regulation of serotonin1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for the neurobiology of depression. Biol. Psychiatry 43, 547–573.doi:10.1016/S0006-3223(97)00484-8 (doi:10.1016/S0006-3223(97)00484-8)

CrossRefMedlineWeb of Science

127. ↵

1. Farisse J.,

2. Hery F.,

3. Barden N.,

4. Hery M.,

5. Boulenguez P.

2000 Central 5-HT(1) and 5-HT(2) binding sites in transgenic mice with reduced glucocorticoid receptor number. Brain Res. 862, 145–153.doi:10.1016/S0006-8993(00)02104-1 (doi:10.1016/S0006-8993(00)02104-1)

CrossRefMedlineWeb of Science

128.

1. Meijer O. C.,

2. de Kloet E. R.

1998 Corticosterone and serotonergic neurotransmission in the hippocampus: functional implications of central corticosteroid receptor diversity. Crit. Rev. Neurobiol. 12, 1–20.

CrossRefMedlineWeb of Science

129.

1. Meijer O. C.,

2. Williamson A.,

3. Dallman M. F.,

4. Pearce D.

2000 Transcriptional repression of the 5-HT1A receptor promoter by corticosterone via mineralocorticoid receptors depends on the cellular context. J. Neuroendocrinol. 12, 245–254.doi:10.1046/j.1365-2826.2000.00445.x (doi:10.1046/j.1365-2826.2000.00445.x)

CrossRefMedlineWeb of Science

130. ↵

1. Ou X. M.,

2. Storring J. M.,

3. Kushwaha N.,

4. Albert P. R.

2001 Heterodimerization of mineralocorticoid and glucocorticoid receptors at a novel negative response element of the 5-HT1A receptor gene. J. Biol. Chem. 276, 14 299–14 307.

Abstract/FREE Full Text

131. ↵

1. Yadav V. K.,

2. et al.

2009 A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell 138, 976–989.doi:10.1016/j.cell.2009.06.051 (doi:10.1016/j.cell.2009.06.051)

CrossRefMedlineWeb of Science

132. ↵

1. Leibowitz S. F.,

2. Alexander J. T.

1998 Hypothalamic serotonin in control of eating behavior, meal size, and body weight. Biol. Psychiatry 44, 851–864.doi:10.1016/S0006-3223(98)00186-3 (doi:10.1016/S0006-3223(98)00186-3)

CrossRefMedlineWeb of Science

133. ↵

1. Curzon G.

1990 Serotonin and appetite. Ann. N. Y. Acad. Sci. 600, 521–530 (discussion 30–1).doi:10.1111/j.1749-6632.1990.tb16907.x (doi:10.1111/j.1749-6632.1990.tb16907.x)

MedlineWeb of Science

134. ↵

1. Meguid M. M.,

2. Fetissov S. O.,

3. Varma M.,

4. Sato T.,

5. Zhang L.,

6. Laviano A.,

7. Rossi-Fanelli F.

2000 Hypothalamic dopamine and serotonin in the regulation of food intake. Nutrition 16, 843–857.doi:10.1016/S0899-9007(00)00449-4 (doi:10.1016/S0899-9007(00)00449-4)

CrossRefMedlineWeb of Science

135. ↵

1. Bross R.,

2. Hoffer L. J.

1995 Fluoxetine increases resting energy expenditure and basal body temperature in humans. Am. J. Clin. Nutr. 61, 1020–1025.

Abstract/FREE Full Text

136. ↵

1. van Riel E.,

2. Meijer O. C.,

3. Steenbergen P. J.,

4. Joels M.

2003 Chronic unpredictable stress causes attenuation of serotonin responses in cornu ammonis 1 pyramidal neurons. Neuroscience 120, 649–658.doi:10.1016/S0306-4522(03)00355-5 (doi:10.1016/S0306-4522(03)00355-5)

CrossRefMedlineWeb of Science

137.

1. Gartside S. E.,

2. Johnson D. A.,

3. Leitch M. M.,

4. Troakes C.,

5. Ingram C. D.

2003 Early life adversity programs changes in central 5-HT neuronal function in adulthood. Eur. J. Neurosci. 17, 2401–2408.doi:10.1046/j.1460-9568.2003.02668.x (doi:10.1046/j.1460-9568.2003.02668.x)

CrossRefMedline

138.

1. Van Den Bogaert A.,

2. et al.

2006 Association of brain-specific tryptophan hydroxylase, TPH2, with unipolar and bipolar disorder in a Northern Swedish, isolated population. Arch. Gen. Psychiatry 63, 1103–1110.doi:10.1001/archpsyc.63.10.1103 (doi:10.1001/archpsyc.63.10.1103)

CrossRefMedlineWeb of Science

139. ↵

1. Arborelius L.,

2. Eklund M. B.

2007 Both long and brief maternal separation produces persistent changes in tissue levels of brain monoamines in middle-aged female rats. Neuroscience 145, 738–750.doi:10.1016/j.neuroscience.2006.12.007 (doi:10.1016/j.neuroscience.2006.12.007)

CrossRefMedlineWeb of Science

140. ↵

1. Azmitia E. C. Jr.,

2. McEwen B. S.

1976 Early response of rat brain tryptophan hydroxylase activity to cycloheximide, puromycin and corticosterone. J. Neurochem. 27, 773–778.doi:10.1111/j.1471-4159.1976.tb10407.x (doi:10.1111/j.1471-4159.1976.tb10407.x)

CrossRefMedlineWeb of Science

141. ↵

1. Singh V. B.,

2. Corley K. C.,

3. Phan T. H.,

4. Boadle-Biber M. C.

1990 Increases in the activity of tryptophan hydroxylase from rat cortex and midbrain in response to acute or repeated sound stress are blocked by adrenalectomy and restored by dexamethasone treatment. Brain Res. 516, 66–76.doi:10.1016/0006-8993(90)90898-L (doi:10.1016/0006-8993(90)90898-L)

CrossRefMedlineWeb of Science

142. ↵

1. Boadle-Biber M. C.,

2. Corley K. C.,

3. Graves L.,

4. Phan T. H.,

5. Rosecrans J.

1989 Increase in the activity of tryptophan hydroxylase from cortex and midbrain of male Fischer 344 rats in response to acute or repeated sound stress. Brain Res. 482, 306–316.doi:10.1016/0006-8993(89)91193-1 (doi:10.1016/0006-8993(89)91193-1)

CrossRefMedlineWeb of Science

143. ↵

1. Chamas F. M.,

2. Underwood M. D.,

3. Arango V.,

4. Serova L.,

5. Kassir S. A.,

6. Mann J. J.,

7. Sabban E. L

2004 Immobilization stress elevates tryptophan hydroxylase mRNA and protein in the rat raphe nuclei. Biol. Psychiatry 55, 278–283.doi:10.1016/S0006-3223(03)00788-1 (doi:10.1016/S0006-3223(03)00788-1)

CrossRefMedlineWeb of Science

144. ↵

1. Clark M. S.,

2. Russo A. F.

1997 Tissue-specific glucocorticoid regulation of tryptophan hydroxylase mRNA levels. Brain Res. Mol. Brain Res. 48, 346–354.doi:10.1016/S0169-328X(97)00106-X (doi:10.1016/S0169-328X(97)00106-X)

Medline

145. ↵

1. Clark J. A.,

2. Flick R. B.,

3. Pai L. Y.,

4. Szalayova I.,

5. Key S.,

6. Conley R. K.,

7. Deutch A. Y.,

8. Hutson P. H.,

9. Mezey E.

2008 Glucocorticoid modulation of tryptophan hydroxylase-2 protein in raphe nuclei and 5-hydroxytryptophan concentrations in frontal cortex of C57/Bl6 mice. Mol. Psychiatry 13, 498–506.doi:10.1038/sj.mp.4002041 (doi:10.1038/sj.mp.4002041)

CrossRefMedlineWeb of Science

146. ↵

1. Clark J. A.,

2. Pai L. Y.,

3. Flick R. B.,

4. Rohrer S. P.

2005 Differential hormonal regulation of tryptophan hydroxylase-2 mRNA in the murine dorsal raphe nucleus. Biol. Psychiatry 57, 943–946.doi:10.1016/j.biopsych.2005.01.013 (doi:10.1016/j.biopsych.2005.01.013)

CrossRefMedlineWeb of Science

147.

1. Heydendael W.,

2. Jacobson L.

2008 Differential effects of imipramine and phenelzine on corticosteroid receptor gene expression in mouse brain: potential relevance to antidepressant response. Brain Res. 1238, 93–107.doi:10.1016/j.brainres.2008.08.018 (doi:10.1016/j.brainres.2008.08.018)

CrossRefMedlineWeb of Science

148.

1. Shishkina G. T.,

2. Kalinina T. S.,

3. Dygalo N. N.

2007 Up-regulation of tryptophan hydroxylase-2 mRNA in the rat brain by chronic fluoxetine treatment correlates with its antidepressant effect. Neuroscience 150, 404–412.doi:10.1016/j.neuroscience.2007.09.017 (doi:10.1016/j.neuroscience.2007.09.017)

CrossRefMedlineWeb of Science

149.

1. Dygalo N. N.,

2. Shishkina G. T.,

3. Kalinina T. S.,

4. Yudina A. M.,

5. Ovchinnikova E. S.

2006 Effect of repeated treatment with fluoxetine on tryptophan hydroxylase-2 gene expression in the rat brainstem. Pharmacol. Biochem. Behav. 85, 220–227.doi:10.1016/j.pbb.2006.08.004 (doi:10.1016/j.pbb.2006.08.004)

CrossRefMedline

150. ↵

1. Abumaria N.,

2. Rygula R.,

3. Hiemke C.,

4. Fuchs E.,

5. Havemann-Reinecke U.,

6. Ruther E.,

7. Flügge G.

2007 Effect of chronic citalopram on serotonin-related and stress-regulated genes in the dorsal raphe nucleus of the rat. Eur. Neuropsychopharmacol. 17, 417–429.doi:10.1016/j.euroneuro.2006.08.009 (doi:10.1016/j.euroneuro.2006.08.009)

CrossRefMedlineWeb of Science

151. ↵

1. Abumaria N.,

2. Ribic A.,

3. Anacker C.,

4. Fuchs E.,

5. Flugge G.

2008 Stress upregulates TPH1 but not TPH2 mRNA in the rat dorsal raphe nucleus: identification of two TPH2 mRNA splice variants. Cell Mol. Neurobiol. 28, 331–342.doi:10.1007/s10571-007-9259-5 (doi:10.1007/s10571-007-9259-5)

CrossRefMedlineWeb of Science

152. ↵

1. Grohmann M.,

2. et al.

2010 Alternative splicing and extensive RNA editing of human TPH2 transcripts. PLoS ONE 5, e8956.doi:10.1371/journal.pone.0008956 (doi:10.1371/journal.pone.0008956)

CrossRefMedline

153. ↵

1. Clark M. S.,

2. McDevitt R. A.,

3. Neumaier J. F.

2006 Quantitative mapping of tryptophan hydroxylase-2, 5-HT1A, 5-HT1B, and serotonin transporter expression across the anteroposterior axis of the rat dorsal and median raphe nuclei. J. Comp. Neurol. 498, 611–623.doi:10.1002/cne.21073 (doi:10.1002/cne.21073)

CrossRefMedline

154. ↵

1. McEuen J. G.,

2. Beck S. G.,

3. Bale T. L.

2008 Failure to mount adaptive responses to stress results in dysregulation and cell death in the midbrain raphe. J. Neurosci. 28, 8169–8177.doi:10.1523/JNEUROSCI.0004-08.2008 (doi:10.1523/JNEUROSCI.0004-08.2008)

Abstract/FREE Full Text

155. ↵

1. Chen G. L.,

2. Novak M. A.,

3. Meyer J. S.,

4. Kelly B. J.,

5. Vallender E. J.,

6. Miller G. M.

2010 TPH2 5′- and 3′-regulatory polymorphisms are differentially associated with HPA axis function and self-injurious behavior in rhesus monkeys. Genes Brain Behav. 9, 335–347.doi:10.1111/j.1601-183X.2010.00564.x (doi:10.1111/j.1601-183X.2010.00564.x)

CrossRefMedlineWeb of Science

156. ↵

1. Chen G. L.,

2. Novak M. A.,

3. Meyer J. S.,

4. Kelly B. J.,

5. Vallender E. J.,

6. Miller G. M.

2010 The effect of rearing experience and TPH2 genotype on HPA axis function and aggression in rhesus monkeys: a retrospective analysis. Horm. Behav. 57, 184–191.doi:10.1016/j.yhbeh.2009.10.012 (doi:10.1016/j.yhbeh.2009.10.012)

CrossRefMedlineWeb of Science

157. ↵

1. Bartolomucci A.,

2. Carola V.,

3. Pascucci T.,

4. Puglisi-Allegra S.,

5. Cabib S.,

6. Lesch K. P.,

7. Parmigiani S.,

8. Palanza P.,

9. Gross C.

2010 Increased vulnerability to psychosocial stress in heterozygous serotonin transporter knockout mice. Dis. Model Mech. 3, 459–470.doi:10.1242/dmm.004614 (doi:10.1242/dmm.004614)

Abstract/FREE Full Text

158.

1. Carola V.,

2. Frazzetto G.,

3. Pascucci T.,

4. Audero E.,

5. Puglisi-Allegra S.,

6. Cabib S.,

7. Lesch K. P.,

8. Gross C.

2008 Identifying molecular substrates in a mouse model of the serotonin transporter x environment risk factor for anxiety and depression. Biol. Psychiatry 63, 840–846.doi:10.1016/j.biopsych.2007.08.013 (doi:10.1016/j.biopsych.2007.08.013)

CrossRefMedlineWeb of Science

159.

1. Jansen F.,

2. Heiming R. S.,

3. Kloke V.,

4. Kaiser S.,

5. Palme R.,

6. Lesch K. P.,

7. Sachser N.

2011 Away game or home match: the influence of venue and serotonin transporter genotype on the display of offensive aggression. Behav. Brain Res. 219, 291–301.doi:10.1016/j.bbr.2011.01.029 (doi:10.1016/j.bbr.2011.01.029)

CrossRefMedlineWeb of Science

160.

1. Jansen F.,

2. Heiming R. S.,

3. Lewejohann L.,

4. Touma C.,

5. Palme R.,

6. Schmitt A.,

7. Lesch K. P.,

8. Sachser N.

2010 Modulation of behavioural profile and stress response by 5-HTT genotype and social experience in adulthood. Behav. Brain Res. 207, 21–29.doi:10.1016/j.bbr.2009.09.033 (doi:10.1016/j.bbr.2009.09.033)

CrossRefMedlineWeb of Science

161.

1. Kloke V.,

2. Jansen F.,

3. Heiming R. S.,

4. Palme R.,

5. Lesch K. P.,

6. Sachser N.

2011 The winner and loser effect, serotonin transporter genotype, and the display of offensive aggression. Physiol. Behav. 103, 565–574.doi:10.1016/j.physbeh.2011.04.021 (doi:10.1016/j.physbeh.2011.04.021)

CrossRefMedlineWeb of Science

162. ↵

1. Van den Hove,

2. et al.

2011 Sex-specific effects of prenatal stress in 5-HTT deficient mice: towards molecular mechanisms of gene × environment interactions. PLoS ONE 6, e22715.doi:10.1371/journal.pone.0022715 (doi:10.1371/journal.pone.0022715)

CrossRefMedline

 


1 | 2 | 3 | 4 | 5 | 6 | 7 |

Ïîèñê ïî ñàéòó:



Âñå ìàòåðèàëû ïðåäñòàâëåííûå íà ñàéòå èñêëþ÷èòåëüíî ñ öåëüþ îçíàêîìëåíèÿ ÷èòàòåëÿìè è íå ïðåñëåäóþò êîììåð÷åñêèõ öåëåé èëè íàðóøåíèå àâòîðñêèõ ïðàâ. Ñòóäàëë.Îðã (0.307 ñåê.)