|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Приборы аэрокосмической съемкиСъемка больших территорий в настоящее время осуществляется методами фотограмметрии, изучающей способы и технологию определения форм, размеров, положения в пространстве, количественные и качественные характеристики объектов по их изображениям. Изображения местности получают с помощью специальной аппаратуры, устанавливаемой на авиационных или космических носителях. Для аэросъемки используют самолеты (например, АН-30, ТУ-134, ИЛ-18), сверхлегкие летательные аппараты (малые самолеты, мотодельтапланы) и вертолеты. Космическая съемка выполняется с искусственных спутников Земли, пилотируемых космических кораблей и орбитальных станций. Среди аэрокосмических различают съемки фотографические, сканерные, тепловые инфракрасные, радиолокационные и др. Основным видом аэрокосмической съемки является аэрофотосъемка, которую выполняют с помощью аэрофотоаппаратов (рис. 1, а). Аэрофотоаппаратом изображение местности фиксируется на фотопленке - черно-белой, цветной или спектрозональной. Наиболее распространены форматы снимков: в нашей стране - 18×18 см и 30×30 см, за рубежом -18×18 см и 23×23 см. В аэрофотоаппаратах применяют сфокусированные на бесконечность линзовые объективы с фокусным расстоянием от 35 до 1000 мм (наиболее часто используются объективы с фокусным расстоянием 70, 100, 200 мм). Формат кадра и фокусное расстояние определяют угол поля зрения аэрофотоаппарата 2b (рис.1, б). У узкоугольных аэрофотоаппаратов 2b < 50°, у широкоугольных - достигает 140°. Возможность раздельно различать на снимке мелкие близко расположенные детали изображения называется разрешающей способностью снимка. В настоящее время аэрофотоснимки имеют разрешающую способность 10-40 линий на миллиметр. При фотографировании на аэроснимке фиксируется изображение местности, а также координатные метки, которые определяют плоскую систему координат снимка (см. рис.1, б). а) б)
Рис.1 - Аэрофотоаппарат: а – устройство: 1 – кассета; 2 – камерная часть; 3 – часть объектива; 4 – командный прибор; б – схема фотосъемки: S – центр проектирования снимка; f – фокусное расстояние; H – высота фотографирования
Аэрофотоснимок, угол наклона которого при фотографировании был равен нулю, называется горизонтальным, при угле наклона, не превышающем 3°, - плановым, при угле наклона более 3° - перспективным. Различают аэрофотосъемку одинарную - это съемка отдельных объектов, маршрутную - фотографирование полосы местности вдоль заданной линии (например, железной дороги) и площадную - фотографирование местности несколькими параллельными маршрутами. Фотографирование выполняют так, чтобы смежные снимки одного маршрута имели продольное перекрытие не менее 60%, а снимки соседних маршрутов – поперечное перекрытие не менее 30%. Аэрофотоснимок представляет собой центральную проекцию точек местности на плоскость снимка (см. рис.1, б). Масштаб горизонтального снимка определяется по формуле , (1) где М – знаменатель масштаба; Н - высота полёта; f - фокусное расстояние аэрофотоаппарата. Для выполнения космических съемок используют космические фотоаппараты, являющиеся длиннофокусными модификациями аэрофотоаппаратов. Наряду с аэрофотоаппаратами при аэросъемке стали применять цифровые электронные камеры, сканеры и другие съемочные системы, создающие цифровые изображения местности. Цифровая электронная камера снабжена ПЗС-приемником (прибором с зарядовой связью). ПЗС-приемник представляет собой многоэлементный фотоэлектрический приемник излучения, состоящий из миниатюрных фотодиодов, соединенных в линейку или двумерную матрицу. Размер отдельного чувствительного элемента - меньше 0,01 мм. Лучи света от разных участков местности попадают на разные фотодиоды, создавая в совокупности изображение местности. Сканеры бывают оптико-механические и оптико-электронные. В оптико-механическом сканере сканирующее устройство – быстрокачающееся зеркало, которое, просматривая местность поперек движения носителя, посылает лучистый поток в объектив и далее на точечный фотоприемник. В оптико-электронном сканере для регистрации излучения используется ПЗС-линейка, располагаемая перпендикулярно к направлению движения носителя аппаратуры. Периодически ПЗС-линейкой фиксируется строка изображения местности. Последовательное соединение строк формирует изображение полосы местности (рис. 2). Разрешающую способность цифровых снимков принято характеризовать числом точек на дюйм - dpi (от англ. dots per inch) и размером пикселя на местности - PIX. В частности, размер пикселя в системе TM, установленной на ИСЗ Landsat, равен 30 м, а МСУ-Э/Ресурс-О – 45 м.
Рис. 2 - Сканерная съемка Сканерный метод позволяет выполнять съемки местности в течение длительного времени, передавая собираемую информацию по радиоканалам на Землю. Лазерный сканер - сканирующий лазерный дальномер. Местность и расположенные на ней объекты отображаются множеством точек, для каждой из которых получают пространственные координаты и которые при визуализации на мониторе образуют объемное изображение объекта. Съемка местности сопровождается определением координат аэросъёмочной аппаратуры с помощью спутникового приемника GPS/ГЛОНАСС, а также измерением высоты съемки радиовысотомером.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |