АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Топки немеханизированные и полумеханические

Читайте также:
  1. Камерні топки з рідким шлаковидаленням. При спалюванні яких палив використовуються ці топки? Які створюються умови для рідкого шлаковидалення?
  2. Камерні топки з твердим шлаковидаленням. При спалюванні яких палив використовуються ці топки? Їх переваги та недоліки.
  3. Механические слоевые топки с цепными решетками
  4. Механические топки.
  5. Определяем объемную долю водяного пара по формуле для Топки,ПП,ВЕ,ВП.
  6. Площадь верхней боковой стенки топки
  7. Степень экранирования топки
  8. Температура дымовых газов на выходе из топки
  9. Топки для факельного сжигания угольной пыли с жидким шлакоудалением
  10. Топки для факельного сжигания угольной пыли с твердым шлакоудалением
  11. Топки с кипящим (псевдоожиженным) слоем (КС)

Простейшим немеханизированным топочным устройством, сохранившимся еще и сейчас в отдельных установках малой мощности (паропроизводительностью до 0,3 кг/с), является топка с ручной периодической подачей топлива на колосниковую решетку. Колосниковая решетка поддерживает сжигаемое топливо и одновременно служит для распределения воздуха, поступающего через нее в слой. Решетка набирается из отдельных чугунных балочных или плиточных колосников.

Отношение площади всех зазоров Rз в колосниковой решетке, через которые поступает в слой воздух, ко всей площади решетки R называют живым сечением решетки и обычно выражают в процентах.

Необходимая величина живого сечения решетки зависит от рода сжигаемого топлива и крупности кусков. Так, при сжигании кускового торфа и дров применяются балочные колосники, для которых живое сечение колеблется в пределах 25-40 %. Для антрацита и бурых углей применяются плиточные колосники с живым сечением 12-18 %.

Характерной особенностью тепловой работы топки с ручным обслуживанием являются периодическая подача топлива и, в связи с этим, цикличность процесса горения. Периодическая загрузка топлива на решетку определяет ряд существенных принципиальных недостатков такой топки, одним из которых является чередование по времени фаз горения топлива. Существенным недостатком является и то, что эксплуатация такой топки связана с тяжелым ручным трудом. Учитывая серьезные недостатки ручных топок, их повсеместно заменяют полумеханизированными или полностью механизированными топочными устройствами.

Ручные топки типа РПК. Топки типа РПК с ручным обслуживанием (рис. 16) имеют неподвижную колосниковую решетку с поворотными колосниками трех моделей. Угол поворота колосников решетки по отношению к горизонтальной плоскости равен 60°, живое сечение для прохода воздуха через решетку составляет 5 % от активной площади решетки.

 

Рис. 16. Ручная топка с неподвижной колосниковой решеткой и опрокидными колосниками:

1 - привод колосников;

2 - опрокидной колосник;

3 - шлаковый затвор;

4 - патрубок для входа воздуха

 

 

Частичная механизация ручной топки может быть достигнута установкой поворотных или качающихся колосников. Этим значительно облегчается одна из наиболее трудоемких операций - очистка решетки от шлака. Облегчение труда кочегара, а также улучшение условий работы слоя достигаются механизацией загрузки топлива на решетку с применением различных забрасывателей. В этом случае перед фронтом топки устанавливается бункер, из которого топливо поступает к забрасывателю, загружающему его на слой. Используемые на практике забрасыватели топлива подразделяются на механические, пневматические (паровые) и пневмомеханические. Схемы забрасывателей показаны на рис. 17. Обычно по ширине топки устанавливают несколько забрасы-вателей топлива, часто по числу секций в колосниковой решетке.

Механический забрасыватель (рис. 17а) осуществляет подачу топлива на решетку непрерывно вращающимся (550-800 об/мин) лопастным метателем, к которому топливо поступает из дозирующего устройства.

В пневматическом забрасывателе (рис. 17б) топливо с разгонной плиты сдувается на решетку воздухом, выходящим из сопл круглой или щелевидной формы. Расход воздуха 0,2-0,25 м3/кг топлива, скорость истечения воздуха 30-80 м/с. В паровых забрасывателях используется пар, выходящий из сопл со скоростью около 400 м/с.

Забрасыватели дают неравномерное по фракционному составу распределение топлива по длине решетки. Механические забрасыватели подают более крупные куски топлива на заднюю половину решетки, а более мелкие - на переднюю. Пневматические (паровые) забрасыватели, наоборот, загружают более крупное топливо ближе к фронту топки, а более мелкое - в заднюю ее часть.

а) б) в)

Рис. 17. Схемы забрасывателей топлива:

а - механический забрасыватель; б – пневматический забрасыватель;

в – пневмомеханический забрасыватель; 1 – дозирующее устройство;

2 – метатель; 3 – разгонная плита; 4 – распределительная плита

В пневмомеханическом забрасывателе (рис. 17в) сочетается механическое и пневматическое воздействие на кусочки топлива. Воздух здесь способствует более равномерному распределению мелочи по длине решетки.

Механизация подачи топлива и очистки слоя от шлака позволяет значительно уменьшить затраты физического труда и повысить экономичность топочного устройства. На рис. 18 в качестве примера показана полумеханическая топка с пневмомеханическим забрасывателем и решеткой с поворотными колосниками.

Топка ПМЗ-РПК относится к факельно-слоевым устройствам с неподвижной горизонтальной колосниковой решеткой, непрерывным забросом топлива на неподвижный горящий слой и периодическим удалением шлака. Количество вторичного воздуха, подводимого к забрасывателю, составляет около 15 % общего количества воздуха, необхо-димого для горения топлива. Давление вторичного воздуха до 800 Па. Топки ПМЗ-РПК рекомендуются для агрегатов паропроизводительностью до 1,8 кг/с.

 

 

Рис. 18. Полумеханизированная топка с пневмомеханическим забрасывателем

(ПМЗ):

1 - неподвижная колосниковая решетка; 2 - шлаковый бункер с

затвором; 3 - воздухоподводящая труба; 4 - забрасыватель в

цилиндрическом лотке; 5 - питатель; 6 - распределительная плита;

7 - бункер для топлива; 8 - топочная камера; 9 - воздушный короб;

10 - гляделки; 11 - труба для подачи вторичного воздуха

В топках с механическим забрасывателем подача топлива осуществляется с помощью вращающегося ротора с лопостями, а при пневматической заброске топливо подается в топку струей воздуха. Полумеханизированная топка с пневмомеханическими забрасывателями типа ПМЗ работает по принципу верхней подачи топлива на неподвижный горящий слой. Горение топлива происходит частично во взвешенном состоянии (мелкие фракции) и частично в слое на решетке. Накапливающийся шлак удаляется с помощью периодического покачивания колосников. Дробленое топливо из бункера 7 поступает на распределительную плиту 6, откуда с помощью питателя 5 подается к лопастному забрасывателю 4. Плунжер питателя имеет возвратно-поступательное движение, сообщаемое ему с помощью кулисного механизма. Воздух для развеивания мелких фракций топлива поступает из короба 9 в воздушные каналы кожуха забрасывателя и через специальные сопла подается в топку. Полотно решетки 1 состоит из поворотных колосников беспровального профиля. Такие топки применяются для сжигания каменных углей, бурых углей и сортированного антрацита.

Интенсивность выгорания топлива в слое, где горение обычно протекает в диффузионной области, зависит от скорости подвода окислителя. Для обычных слоевых топок пределом дутьевой форсировки слоя является нарушение его устойчивости. При повышенной скорости дутья мелкие частицы топлива начинают выноситься из слоя. В местах выноса сопротивление слоя падает.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.009 сек.)