АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Кристаллическая решетка

Читайте также:
  1. Глава 12. Венера и кристаллическая решетка Земли
  2. Глава 5. Кристаллическая решетка Земли и решетки-паразиты
  3. Дифракционная решетка.

Химическая связь.

Ковалентная связь образуется между атомами одного или нескольких химических элементов с близкими ионизационными потенциалами. В чистом виде ковалентная связь реализуется при взаимодействии элементов с наполовину заполненными электронными оболочками. H2,C, Si, Ge, Sn. Соседние атомы обмениваются электронами.

Появление между положительно заряженными ионами пары отрицательно заряженных электронов приводит к тому, что оба иона притягиваются к обобществленным электронам и, тем самым, притягиваются друг к другу. Каждый атом взаимодействует с ограниченным числом соседей, причем число соседей равно числу валентных электронов атома. Следовательно, ковалентная связь насыщенна. Кроме того, атом взаимодействует только с теми соседями, с которыми он обменялся электронами, то есть ковалентная связь направленна.

Ионная связь образуется при взаимодействии атомов с малым количеством валентных электронов и атомов с большим количеством электронов на валентных оболочках. При этом наружные электроны атомов с низкими потенциалами ионизации переходят на валентные оболочки атомов с высокими ионизационными потенциалами. Ионная связь ненасыщенна, поскольку каждый из отрицательно заряженных ионов притягивает к себе положительно заряженные, а каждый из положительно заряженных ионов притягивает к себе все отрицательно заряженные. Однако ионная связь направлена, поскольку ион притягивает к себе разноименно заряженные ионы и отталкивает одноименно заряженные.

Уменьшение размера иона и увеличение его заряда ведет к росту энергии связи, а следовательно, к росту температуру плавления материала, уменьшению коэффициента теплового расширения и к увеличению модуля упругости.

Металлическая связь образуется между атомами одного или нескольких химических элементов, у которых валентные электронные оболочки застроены меньше чем на половину. Поскольку энергия иона минимальна при полностью заполненной внешней оболочке, атомы отдают внешние валентные электроны и превращаются в положительно заряженные ионы, между которыми находятся свободные электроны (электронный газ).

Металлическая связь ненаправленна и ненасыщенна. Кристаллические решетки металлов упакованы плотно.

2.

Кристаллическая решетка.

Элементарная ячейка кристалла – та минимальная конфигурация атомов, кот. сохраняет свойства кристалла и при трансляции которой можно заполнить сколь угодно большой кристалл.

Координационное число – число ближайших соседей атома.

 
 

У элементов четвертой группы ковалентная насыщенная и направленная связь, и у каждого атома четыре соседа. К=4. Элементарную решетку можно представить в виде тетраэдра с одним атомом в центре и четырьмя атомами по вершинам тетраэдра. Кристаллическую решетку с такой элементарной ячейкой имеют элементарный кремний, германий, углерод в модификации алмаза. Этот тип кристаллической решетки принято называть решеткой алмаза.

 

При образовании ионной связи кристаллические решетки получаются более компактными. К=6. NaCl:

При образовании металлической связи кристаллические решетки становятся еще более компактными. К=8 или К=12. ГЦК, ОЦК, ГПУ:

ОЦК решетку имеют такие металлы, как вольфрам, молибден, ниобий, низкотемпературные модификации железа, титана, щелочные металлы и ряд других металлов. Серебро, медь, алюминий, никель, высокотемпературная модификация железа и ряд других металлов имеют ГЦК решетку. ГП решетка у магния, цинка, кадмия, высокотемпературной модификации титана.

 

3.

Металлы, описываемые пространственной кристаллической решеткой, под которой понимают наименший комплекс атомов, при многократной трансляции которых по всем направлениям воспроизводится пространственная кристаллическая решетка.

В узлах кристаллической решетки располагаются атомы.

Пространственную кристаллическую решетку легче всего представить в виде элементарной кристаллической ячейки. Ячейка – это та часть решетки, при многократной трансляции которой она и воспроизводится.

Три основные вектора элементарной ячейки называются трансляционными плоскими осевыми единицами.

Абсолютная величина трансляции – это период кристаллической решетки.

Период кристаллической решетки измеряют в анкстреммах

1А=10-8 см или в кХ (килоиксах), так называемых кристаллографических анкстреммах.

1кХ=1,00202 А

На одну элементарную ячейку приходится различное количество атомов; при чем атомы занимают определенные места в ячейке.

В зависимости от расположения атомов в ячейке различают простые, кубические, объемно-центрированные кубические, гранецентрированные кубические, гексагональные решетки.

1.Простая решетка представляется в виде куба, в узлах которой располагаются атомы.

Простейшая решетка описывается одним параметром, которым является ребро куба а.

2.Объемно-центрированная кубическая решетка (ОЦК) представляет собой также куб, внутри которого дополнительно расположен еще один атом.

Параметры решетки определяются длиной ребра куба а.

3.Гранецентрированная кубическая решетка (ГЦК) представляет собой куб, В центре каждой грани которого расположены дополнительно по одному атому.

4.Гексагональная плотно упакованная решетка. В отличие от кубической характеризуется двумя параметрами а и с.

В случае, если отношение с/а=1,666, то решетка считается плотноупакованной, а иначе – неплотно упакованной.

Примеры:

ОЦК – вольфрам, молибден, железо Fea;

ГЦК – алюминий, медь, никель, железо Feg;

ГПУ – бериллий ….

Некоторые металлы, например индий, имеют тетрагональную решетку.

Свойства металлов при прочих равных условиях определяются типом кристаллической решётки, т.е. количеством атомов, приходящихся на одну элементарную ячейку. На простую ячейку приходит с один полный атом.

На ОЦК ячейку приходится два атома: один атом вносится атомом и один принадлежит только этой ячейке.

Для ВЦК на одну ячейку приходится четыре атома.

Плотность кристаллической решетки определяется, так называемым координатным числом. Под координатным числом понимается число атомов, находящихся на кратчайшем расстоянии от данного атома. Для ОЦК решетки К=8, для ГЦК – К=12 и для ГПУ – К=12.

От величины координатного числа зависит компактность (плотность укладки) кристаллической решетки. Так в простой кристаллической решетки плотность укладки атомов в ячейке составляет менее 50%. В ОЦК – 50%, в решетках с координатным числом 12 – порядка 75%.

4.

5.

Анизотропия - это зависимость свойств кристалла от направления, возникающая в результате упорядоченного расположения атомов (ионов, молекул) в пространстве. Свойства кристаллов определяются взаимодей­ствием атомов. В кристалле расстояния между атомами в различных кри­сталлографических направлениях различны, а поэтому различны и свой­ства..

Анизотропия присуща многим свойствам кристаллов. Наиболее силь­но она проявляется в кристаллах со структурами, обладающими малойсимметрией (табл. 1.2).

Из приведенных значений температурных коэффициентов линейного расширения в кристаллах по трем координатным осям можно заключить, что анизотропия резко проявляется у моноклинных и ромбических кри­сталлов и практически незаметна у кубических.

Анизотропия свойств проявляется при использовании .иОНО1СрuстаА­.40в, полученных искусственным путем. В природных условиях кристал­лические тела - nО.4и7Сриста.мы, т.е. состоят из множества мелких раз­лично ориентированных кристаллов. В этом случае анизотропии нет, таккак среднестатистическое рассТояние между атомами по всем направлени­ям оказывается примерно одинаковым. В связи с этим поликристалличе­ские тела считают мнимоизотропными. В процессе обработки давлением

поликристалла кристаллографические плоскости одного индекса в различ­

.

ных зернах могут ориентироваться параллельно. Такие поликристаллы

называют ще7Сстурованны.иu и они, подобно монокристаллам, анизотроп­ны.

Прочность И пластичность монокристалла меди изменяются в зави­симости от направления (ив = 350...180 МПаj б = 10...50 %). Для поли­кристаллической меди ив = 250 МПа и б = 40 %.

6.

Точечные дефекты возникают при воздействии тепловых или силовых нагрузок. Атомы, находящиеся в узлах кристаллической решетки колеблются. В любой момент в кристалле всегда проявляются атомы, имеющие большую энергию по сравнению с близлежащими атомами. При чем этой энергии хватает не только на то, чтобы атомы вышел из своего узла, но и на то, чтобы он преодолел потенциальные барьеры, выстраиваемые на его пути близлежащими атомами.

В результате узел, из которого вышел атом, остается вакантным. Этот дефект получил название – вакансия. Вышедший атом, попавший в междоузлие – также дефект, получивший название дислоцированный атом.

Как в первом, так и во втором случаях кристаллическая решетка искажается вокруг дефекта на несколько атомных периодов.

Вокруг вакансий решетка как бы искажается, пытаясь залечить вакансию, а вокруг дислоцированного атома – наоборот. Вакансию иначе называют «дыркой».

7.

Линейные дефекты. В отличие от точечных линейные дефекты имеют большую протяженность в одном направлении и малое искажение решетки в других. Линейные дефекты получили название – дислокации.

Дислокации бывают краевые и винтовые.

Краевая дислокация представляет собой локализованное искажение атомной плоскости за счет введения в нее дополнительной атомной полуплоскости – экстра плоскости, расположенной перпендикулярно плоскости чертежа.

Так же есть и винтовая дислокация; искажение происходит по винтовой плоскости.

Важной характеристикой дислокации является плотность дислокации; представляющая собой суммарную длину дислокации в единице объема ()

В наиболее совершенных кристаллах плотность дислокации равна = 106…108 см-2.

В деформированных = 106...108см-2

8.

Поверхностные дефекты. К ним относятся границы зерен, фрагментов, блоков.

Если под микроскопом наблюдать микроструктуру металла, то видно, что металл состоит из отдельных зерен, т.е. имеет место зеренное строение. Наиболее дефектные участки в структуре – границы зерен, т.е. места стыка зерен. По границе, помимо примесей, концентрируются и дефекты кристаллической решетки: вакансии и дислокации. Однако зерно само по себе не является совершенным. Оно состоит как бы из мозаики отдельных блоков 10-5…10-6 см. Это так называемые блоки мозаики.

Граница стыков между блоками так же являются дефектными участками в структуре. Блоки можно наблюдать только с помощью электронного микроскопа, увеличивающего в десятки тысяч раз.

Блоки разориентированы друг относительно друга на угол в несколько минут. Блоки могут объединяться в более крупные образования, которые получили названия фрагменты.

9.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.)