|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
МЕТОДЫ РАСЧЕТА ЗНАЧЕНИЙ КРИТЕРИЕВ ПОЖАРНОЙ ОПАСНОСТИ ДЛЯ ГОРЮЧИХ ГАЗОВ И ПАРОВВыбор и обоснование расчетного варианта 3.1.1. Выбор расчетного варианта следует осуществлять с учетом вероятности реализации и последствий тех или иных аварийных ситуаций. В качестве расчетного для вычисления критериев пожарной опасности для горючих газов и паров следует принимать вариант аварии, для которого произведение вероятности реализации этого варианта Qw и расчетного избыточного давления D Р при сгорании газопаровоздушных смесей в случае реализации указанного варианта максимально, то есть: G = Qw х D P = max. (3.1.1) Расчет величины G производится следующим образом: a) рассматриваются различные варианты аварии и определяются из статистических данных или на основе ГОСТ 12.1.004-91 вероятности аварий со сгоранием газопаровоздушных смесей Qwi для этих вариантов; б) для каждого из рассматриваемых вариантов определяются по изложенной ниже методике значения расчетного избыточного давления D Рi; в) вычисляются величины Gi = Qwi х D Pi для каждого из рассматриваемых вариантов аварии, среди которых выбирается вариант с наибольшим значением Gi; г) в качестве расчетного для определения критериев пожарной опасности принимается вариант, в котором величина Gi максимальна. При этом количество горючих газов и паров, вышедших в атмосферу, рассчитывается, исходя из рассматриваемого сценария аварии с учетом пп. 3.1.3-3.1.8. 3.1.2. При невозможности реализации описанного выше метода в качестве расчетного следует выбирать наиболее неблагоприятный вариант аварии или период нормальной работы аппаратов, при котором в образовании горючих газопаровоздушных смесей участвует наибольшее количество газов и паров, наиболее опасных в отношении последствий сгорания этих смесей. В этом случае количество газов и паров, вышедших в атмосферу, рассчитывается в соответствии с пп. 3.1.3-3.1.8. 3.1.3. Количество поступивших веществ, которые могут образовывать горючие газовоздушные или паровоздушные смеси, определяется, исходя из следующих предпосылок: а) происходит расчетная авария одного из аппаратов согласно п. 3.1.1 или п. 3.1.2 (в зависимости от того, какой из подходов к определению расчетного варианта аварии принят за основу); б) все содержимое аппарата поступает в окружающее пространство; в) происходит одновременно утечка веществ из трубопроводов, питающих аппарат по прямому и обратному потоку в течение времени, необходимого для отключения трубопроводов. Расчетное время отключения трубопроводов определяется в каждом конкретном случае, исходя из реальной обстановки, и должно быть минимальным с учетом паспортных данных на запорные устройства, характера технологического процесса и вида расчетной аварии. Расчетное время отключения трубопроводов следует принимать равным: - времени срабатывания систем автоматики отключения трубопроводов cогласно паспортным данным установки, если вероятность отказа системы автоматики не превышает 0,000001 в год или обеспечено резервирование ее элементов (но не более 120 с); - 120 с, если вероятность отказа системы автоматики превышает 0,000001 в год и не обеспечено резервирование ее элементов; - 300 с при ручном отключении. Не допускается использование технических средств для отключения трубопроводов, для которых время отключения превышает приведенные выше значения. Под "временем срабатывания" и "временем отключения" следует понимать промежуток времени от начала возможного поступления горючего вещества из трубопровода (перфорация, разрыв, изменение номинального давления и т. п.) до полного прекращения поступления газа или жидкости в окружающее пространство. Быстродействующие клапаны-отсекатели должны автоматически перекрывать подачу газа или жидкости при нарушении электроснабжения. В исключительных случаях в установленном порядке допускается превышение приведенных выше значений времени отключения трубопроводов специальным решением соответствующих министерств или ведомств по согласованию с Госгортехнадзором РФ на подконтрольных ему производствах и предприятиях и ГУГПС МВД России; г) происходит испарение с поверхности разлившейся жидкости; площадь испарения при разливе на горизонтальную поверхность определяется (при отсутствии справочных или иных экспериментальных данных), исходя из расчета, что 1 л смесей и растворов, содержащих 70 % и менее (по массе) растворителей, разливается на площади 0,10 м2, а остальных жидкостей - на 0,15 м2; д) происходит также испарение жидкостей из емкостей, эксплуатируемых с открытым зеркалом жидкости, и со свежеокрашенных поверхностей; е) длительность испарения жидкости принимается равной времени ее полного испарения, но не более 3600 с. 3.1.4. Масса газа m, кг, поступившего в окружающее пространство при расчетной аварии, определяется по формуле m = (Va + Vт) х r г, (3.1.2) где Vа - объем газа, вышедшего из аппарата, м3; Vт - объем газа, вышедшего из трубопровода, м3; r г - плотность газа, кг х м-3. При этом Va = 0,01 х P1 х V, (3.1.3) где Р1 - давление в аппарате, кПа; V - объем аппарата, м3; Vт = V1т + V2т, (3.1.4) где V1т - объем газа, вышедшего из трубопровода до его отключения, м3; V2т - объем газа, вышедшего из трубопровода после его отключения, м3; V1т = q х T, (3.1.5) где q - расход газа, определяемый в соответствии с технологическим регламентом в зависимости от давления в трубопроводе, его диаметра, температуры газовой среды и т. д., м3 х с-1; , (3.1.6) где Р2 - максимальное давление в трубопроводе по технологическому регламенту, кПа; r - внутренний радиус трубопроводов, м; L - длина трубопроводов от аварийного аппарата до задвижек, м. 3.1.5. Масса паров жидкости m, кг, поступивших в окружающее пространство при наличии нескольких источников испарения (поверхность разлитой жидкости, поверхность со свеженанесенным составом, открытые емкости и т. п.), определяется из выражения
m = mр + mемк + mсв.окр + mпер, (3.1.7) где mр - масса жидкости, испарившейся с поверхности разлива, кг; mемк - масса жидкости, испарившейся с поверхностей открытых емкостей, кг; mсв.окр - масса жидкости, испарившейся с поверхностей, на которые нанесен применяемый состав, кг; mпер - масса жидкости, испарившейся в окружающее пространство в случае ее перегрева, кг. При этом каждое из слагаемых (mр, mемк, mсв.окр) в формуле (3.1.7) определяют из выражения m = W х Fи? Т, (3.1.8) где W - интенсивность испарения, кг х с-1 х м-2; Fи - площадь испарения, м2, определяемая в соответствии с п. 3.1.3 в зависимости от массы жидкости mп, вышедшей в окружающее пространство; Т - продолжительность поступления паров легковоспламеняющихся и горючих жидкостей в окружающее пространство согласно п. 3.1.3, с. Величину mпер определяют по формуле (при Та>Ткип) mпер = min , (3.1.9) где mп - масса вышедшей перегретой жидкости, кг; Ср - удельная теплоемкость жидкости при температуре перегрева жидкости Та, Дж х кг-1 х К-1; Та - температура перегретой жидкости в соответствии с технологическим регламентом в технологическом аппарате или оборудовании, К; Ткип - нормальная температура кипения жидкости, К; Lисп - удельная теплота испарения жидкости при температуре перегрева жидкости Та, Дж х кг-1. Если аварийная ситуация связана с возможным поступлением жидкости в распыленном состоянии, то она должна быть учтена в формуле (3.1.7) введением дополнительного слагаемого, учитывающего общую массу поступившей жидкости от распыляющих устройств, исходя из продолжительности их работы. 3.1.6. Масса mп вышедшей жидкости, кг, определяется в соответствии с п. 3.1.3. 3.1.7. Интенсивность испарения W определяется по справочным и экспериментальным данным. Для ненагретых ЛВЖ при отсутствии данных допускается рассчитывать W по формуле (3.1.10) где М - молярная масса, г х моль-1; Рн - давление насыщенного пара при расчетной температуре жидкости, определяемое по справочным данным в соответствии с требованиями п. 1.3, кПа. 3.1.8. Для сжиженных углеводородных газов (СУГ) при отсутствии данных допускается рассчитывать удельную массу испарившегося СУГ mсуг из пролива, кг х м-2, по формуле , (3.1.11) где М - молярная масса СУГ, кг х моль-1; Lисп - мольная теплота испарения СУГ при начальной температуре СУГ Тж, Дж х моль-1; Формула (3.1.11) справедлива для СУГ с температурой Расчет горизонтальных размеров зон, ограничивающих газо- и паровоздушные смеси с концентрацией горючего выше НКПР, при аварийном поступлении горючих газов 3.1.9. Горизонтальные размеры зоны, м, ограничивающие область концентраций, превышающих нижний концентрационный предел распространения пламени (Снкпр), вычисляют по формулам: - для горючих газов (ГГ): RНКПР = 14,5632 х ; (3.1.12) - для паров ненагретых легковоспламеняющихся жидкостей (ЛВЖ): RНКПР = 3,1501 х O К х , (3.1.13) r г,п = , где mг - масса поступивших в открытое пространство ГГ при аварийной ситуации, кг; r г - плотность ГГ при расчетной температуре и атмосферном давлении, кг х м-3; mп - масса паров ЛВЖ, поступивших в открытое пространство за время полного испарения, но не более 3600 с, кг; r п - плотность паров ЛВЖ при расчетной температуре и атмосферном давлении, кг х м-3; Рн - давление насыщенных паров ЛВЖ при расчетной температуре, кПа; К - коэффициент, принимаемый равным К = Т/3600 для ЛВЖ; Т - продолжительность поступления паров ЛВЖ в открытое пространство, с; Снкпр - нижний концентрационный предел распространения пламени ГГ или паров ЛВЖ, 3.1.10. За начало отсчета горизонтального размера зоны принимают внешние габаритные размеры аппаратов, установок, трубопроводов и т. п. Во всех случаях значение RНКПР должно быть не менее 0,3 м для ГГ и ЛВЖ. Расчет избыточного давления и импульса волны 3.1.11. Исходя из рассматриваемого сценария аварии, определяется масса m, кг, горючих газов и (или) паров, вышедших в атмосферу из технологического аппарата в соответствии с пп. 3.1.3-3.1.8. 3.1.12. Величину избыточного давления D P, кПа, развиваемого при сгорании газопаровоздушных смесей, определяют по формуле D P = P0? (0,8mпр0,33/r + 3mпр0,66/r2 + 5mпр/r3), (3.1.14) где Р0 - атмосферное давление, кПа (допускается принимать равным 101 кПа); r - расстояние от геометрического центра газопаровоздушного облака, м; mпр - приведенная масса газа или пара, кг, вычисляется по формуле mпр = (Qcг/Qо) х m х Z, (3.1.15) где Qcг - удельная теплота сгорания газа или пара, Дж х кг-1; 3.1.13. Величину импульса волны давления i, Па х с, вычисляют по формуле i = 123 х mпр0,66 /r. (3.1.16)
Таким образом, большинство горючих веществ, независимо от их начального агрегатного состояния, при нагревании переходят в газообразные продукты. Соприкасаясь с воздухом, они образуют горючие смеси, представляющие соответствующую пожарную опасность. Для воспламенения таких смесей не требуется мощного и длительно действующего источника воспламенения. Они воспламеняются даже от искры. Жидкие горючие и легковоспламеняющиеся вещества (нефтепродукты, растительные масла, ароматические углеводороды, спирты, эфиры, альдегиды, кетоны, органические кислоты и др.) при нагревании испаряются, и соответственно их температуре повышается давление. •Легковоспламеняющиеся (ЛВЖ) и горючие (ГЖ) жидкости но степени пожарной опасности делятся на четыре класса (разряда). К тому или иному классу ЛВЖ и ГЖ относятся в зависимости от температуры вспышки их паров: 1-й класс — нефтепродукты и сырая нефть; температура вспышки паров 28° С и ниже; 2-й класс — нефтепродукты и сырая нефть; температура вспышки паров выше 28 до 45° С включительно; 3-й класс — нефтепродукты и сырая нефть; температура вспышки паров выше 45 до 120° С включительно; 4-й класс — нефтепродукты и сырая нефть; температура вспышки паров выше 120° С. Горючие газы (водород, ацетилен, аммиак, коксовый, 1 енераторный, водяной, естественный и другие газы) обладают большей текучестью и диффузионной способностью, чем горючие жидкости. Поэтому образование горючей среды вне емкости, в которой находится газ, возможно в случаях выхода его через неплотности и повреждения емкости. Если выходящая при этом через неплотности струя газа сразу же будет воспламенена, взрывоопасные концентрации не возникнут, газ будет гореть, образуя факел пламени. Создание горючей среды внутри емкости с газом возможно только при достаточном количестве в пей воздуха. Группа горючести. ВНИИПО подразделяет вещества и материалы по горючести на: негорючие, трудногорючие и горючие.. последние в свою очередь делятся на легковоспламеняющиеся и трудновоспламеняющиеся. Негорючими называются вещества и материалы, не i пособные к горению на воздухе. Трудногорючими называются вещества и материалы, которые возгораются при действии источника зажигания, но не- i пособны к самостоятельному горению после его удаления. Горючими называются вещества и материалы, способные - лмовозгораться, а также возгораться от источника зажигания и продолжать самостоятельно гореть после его удаления. К трудновоспламеняющимся относятся горючие ве- щества и материалы с пониженной пожарной опасностью, которые при хранении на открытом воздухе или в помещении не пособны возгораться даже при длительном воздействии малокалорийного источника зажигания (пламени спички, искры, накаленного электропровода и т. п.). Такие вещества и материалы загораются от сравнительно мощного источника при нагревании их значительной части до температуры /воспламенения. К легковоспламеняющимся относятся горючие вещества и материалы с повышенной пожарной опасностью, которые при хранении на открытом воздухе или в помещении способны без предварительного подогревания возгораться от кратковременного воздействия малокалорийного источника зажигания. Группу горючести веществ и материалов учитывают при разработке противопожарных норм и противопожарного режима. На речном транспорте группу горючести используют при классификации опасных грузов, которые перевозят на судах. Степень возгораемости строительных материалов и конструкции определяется в соответствии со «Строительными нормами и правилами» (СНиП) II-A.5-62 «Противопожарные требования. Основные положения проектирования». Зона воспламенения газов и паров в воздухе. Зоной воспламенения газов (паров) в воздухе называется область концентрации данного газа в воздухе при атмосферном давлении 760 мм рт. ст., внутри которой смесь его с воздухом способна воспламеняться от внешнего источника зажигания с последующим распространением горения на весь объем смеси. Наименьшее или наибольшее содержание газа (или пара) в воздухе (или кислороде), при котором возникшее от постороннего источника зажигания пламя может распространиться неограниченно по всему объему смеси, называется концентрационным пределом воспламенения газов и паров Жидкостей. Граничные концентрации зоны воспламенения называются соответственно верхним и нижним пределами воспламенения газов (паров) в воздухе. Величину ниж- -него предела воспламенения газов в воздухе учитывают при классификации производств по пожарной опасности в соответствии со СНиП II-M.2-62 «Производственные здания промышленных предприятий. Нормы проектирования». Величинами пределов воспламенения пользуются при расчете допустимых концентраций газов внутри взрывоопасных технологических аппаратов, систем рекуперации, вентиляции, а также при установлении предельно допустимой взрывоопасной концентрации газов (паров) во время работы с огнем и искрящим инструментом. Температурные пределы воспламенения паров в воздухе. Температурными пределами воспламенения паров в воздухе называются такие температуры вещества, при которых его насыщенные пары, находясь в равновесии с жидкой или твердой фазой образуют в воздухе концентрации, равные соответственно нижнему или верхнему пределам воспламенения. Значения температурных пределов воспламенения применяют мри расчете безопасных температурных режимов закрытых < апологических аппаратов с жидкостями и летучими твердыми п"ществами, работающих при атмосферном давлении. Безопасной средой при образовании взрывоопасных паровоздушных смесей ВНИИПО считает температуру индивидуальною вещества на 10° ниже нижнего или на 10° выше верхнего м-мпературных пределов воспламенения. Если температурный режим аппарата находится в области "поеных температур или хотя бы на непродолжительное время совпадаетт с ней, ВНИИПО рекомендует предусматривать меры по флегматизации взрывоопасных паровоздушных смесей инертными газами, специальными флегматизирующими веществами и in другими средствами. Температура вспышки. Горючие газы и твердые измельченные вещества (пыль горючих веществ) образуют горючие смеси при иобой температуре, твердые вещества, а также жидкости — только при определенных температурах в границах минимального (нижнего) и максимального (верхнего) концентрационных пределов. При внесении искры, открытого огня в среду концентрации паров или газов, равной нижнему концентрационному пределу воспламенения, они вспыхивают, сам же продукт (горючее вещество) не воспламеняется. Температура вспышки — самая низкая температура горючего вещества, при которой над его поверхностью образуются пары или газы, способные вспыхивать в воздухе от постороннего источника зажигания; устойчивого горения вещества не возникает. При температуре вспышки мгновенно сгорает только образовавшаяся смесь паров или газов с воздухом. Температура вспышки является основным показателем степени огнеопасности горючих жидкостей и принята за основу их классификации по степени пожарной опасности. Ее учитывают при классификации производств, помещений и электроус- мновок по степени пожарной опасности в соответствии со СНиП и Правилами устройства электроустановок (ПУЭ), при p i (работке противопожарных мероприятий в целях обеспечения пожарной безопасности и техники безопасности во время погрузки, выгрузки, транспортировки, а также при зачистке, дегазации и и ремонте нефтеналивных судов. Самонагревание. Все горючие вещества на воздухе при определенных температурах окисляются, выделяя при этом тепло, п н зависимости от их структуры и свойства, от скорости процесса выделения и отвода тепла способны самонагреваться. Самонагревание некоторых веществ может происходить не только в результате окисления, а также и вследствие ряда физических и биологических явлений. Температурой самонагревания называется самая низкая температура, при которой в веществе или материале возникают практически различные экзотермические процессы окисления, разложения и т. п. Температура самонагревания потенциально может представлять пожарную опасность. Величину ее используют при определении условий безопасного длительного (или постоянного) нагревания вещества. Безопасной температурой постоянного нагревания данного вещества или материала ВНИИПО считает температуру, не превышающую 90% величины температуры самонагревания. Процесс самонагревания при определенных условиях может перейти в горение. Эти условия создаются при температуре самовоспламенения вещества. Самовоспламенение. Самовоспламенение — такое явление, когда при самой низкой температуре нагревания вещества без внешнего воздействия пламени или раскаленного тела происходит резкое увеличение скорости экзотермической реакции, приводящее к возникновению пламенного горения. Температуру самовоспламенения газов и паров легковоспламеняющихся жидкостей учитывают при их классификации на группы взрывоопасности во время выбора типа электрооборудования, температурных условий безопасного применения вещества при усиленном нагревании его; при вычислении максимально допустимой температуры нагревания неизолированных поверхностей технологического, электрического и другого оборудования; при расследовании причин пожаров, когда необходимо определить, могло ли самовоспламениться вещество от нагретой поверхности. Предельно допустимая температура безопасного нагревания неизолированных поверхностей технологического, электрического и иного оборудования, по данным ВНИИПО, составляет 80% величины температуры самовоспламенения газов или паров, определяемой в градусах Цельсия. Температуру самовоспламенения твердых веществ учитывают при установлении причин пожаров, при выборе оптимальных режимов кратковременного нагревания веществ. Использовать ее для определения предельно допустимой температуры безопасного нагревания неизолированных поверхностей технологического, электрического и другого оборудования нельзя. Самовозгорание. Одни вещества загораются только при нагревании до температуры самовоспламенения, а другие без нагревания, так как окружающая среда уже нагрела их до температуры самовоспламенения. Способность веществ загораться без нагревания в результате самонагревания их до возникновения горенйя называется самовозгораннем, а загорание веществ вследствие нагревания п\ г определенной температуры самовоспламенения — самовоспламенением. Самовозгорание возможно в тех случаях, когда горючие материалы, пропитанные растительными маслами, в результате окисления жиров и масла выделяют значительное количество тепла вызывающего воспламенение как жиров, так и материалов. Волокнистые материалы, пропитанные маслом (по степенипоглощения кислорода), имеют разную степень пожарной опасными Наиболее опасны: льняная олифа, ворвань, льняное, конопляное, ореховое и маковое масла; опасны — подсолнечное, тиковое, сурепное и касторовое масла; менее опасны — оливковое и костяное масла, гусиный жир, говяжье и баранье сало; малоопасны — коровье масло, пчелиный воск и кокосовое масло. К числу самовозгорающихся веществ относятся: масла и жиры, сульфиды железа; растительные продукты; каменный уголь, и и>рф; химические вещества. По температуре самовозгорания испивают степень пожарной опасности теплового режима обрати ки веществ и материалов, условия их хранения. Воспламенение. Температурой воспламенения насыпается самая низкая температура горючего вещества, прими орой последнее выделяет горючие пары или газы с такой скоростью, что после воспламенения их под воздействием внешнего источника зажигания возникает устойчивое горение. Среди газов воспламеняться могут только их горючие смеси,, например, смесь метана с воздухом, паров бензина и других, горючих жидкостей с воздухом или кислородом. Воспламенение жидкостей при соприкосновении с воздухом протекает в две стадии: сначала жидкость испаряется, образуя горючую смесь паров с воздухом; затем при соприкосновении с пламенем эта смесь загорается.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.014 сек.) |