АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Термометры сопротивления

Читайте также:
  1. Бесконтактный метод удельного сопротивления.
  2. Биметаллические и дилатометрические термометры
  3. Биметаллические термометры
  4. Глава 1. Понятие волнового сопротивления.
  5. Жидкостные стеклянные термометры
  6. Измерение подвижности методом магнитного сопротивления.
  7. Манометрические термометры
  8. Манометрические термометры
  9. Методы измерения удельного сопротивления. Условия приприменимое методом Ван-дер-Пау.
  10. Основные методы измерения удельного сопротивления. Измерение удельного сопротивления двухзондовым методом.
  11. Основные методы измерения удельного сопротивления. Метод измерения удельного сопротивления.
  12. Основные методы измерения удельного сопротивления. Условия применения четырехзондовым методом.

 

Термометр сопротивления - комплект для измерения температуры, основанный на зависимости электрического сопротивления термопреобразователя от температуры.

К металлическим провод­никам термопреобразователей сопротивления предъявляется ряд требований, основными из которых являются стабильность градуировочной характеристики и воспроизводимость, обеспе­чивающая взаимозаменяемость изготовляемых термопреобразова­телей сопротивления. К числу не основных, но желательных тре­бований относятся: линейность функции Rt=f(t), по возможности высокое значение температурного коэффициента электрического сопротивления, большое удельное сопротивление и невысокая стоимость материала. Исследованиями установлено, что чем чище металл, тем в большей степени он отвечает указанным основным требованиям. При снятии механических напряжений в металле пу­тем его отжига указанные характеристики достигают своих пре­дельных значений для данного металла.

Платиновые преобразователи сопротивления используются для измерения температуры от –260 до +1100 °С, при этом для диапазона температур от –260 до +750 °С используются плати­новые проволоки диаметром 0,05–0,1 мм, а для измерения тем­ператур до 1100°С, в силу распыления платины при этих темпе­ратурах, диаметр проволоки составляет около 0,5 мм. Платиновые термопреобразователи сопротивления являются наи­более точными первичными преобразователями в диапазоне тем­ператур, где они могут быть использованы. Платиновые термо­преобразователи сопротивления используются в качестве рабочих, образцовых и эталонных термометров. С помощью послед­них осуществляется воспроизведение международной шкалы тем­ператур в диапазоне от –182,97 до 630,5 °С.

Медь – один из недорогостоящих металлов, легко получаемых в чистом виде. Медные термопреобразователи сопротивлений предназначены для измерения температуры в диапазоне от –50 до +200°С. При более высоких температурах медь активно окис­ляется и потому не используется. Диаметр медной проволоки обычно 0,1 мм. Никель и железо благодаря своим относительно высоким тем­пературным коэффициентам электрического сопротивления и сравнительно большим сопротивлениям хотя и используются для измерения температуры в диапазоне от –50 до +250°С, однако широко не применяются. Это связано с тем, что градуировочная характеристика их нелинейна, а главное, не стабильна и не вос­производима, и потому термопреобразователи сопротивления, из­готовленные из этих металлов, не стандартизованы. Конструкция технических термометров с металлическим термопреобразователем сопротивления показана на рисунке. Тонкая проволока илилента из платины или меди 1 наматы­вается на каркас 2 из керамики, слюды, кварца, стек­ла или пластмассы. После намотки обычно неизо­лированной платиновой проволоки каркас вместе с проволокой покрывают слюдой. Длина намотанной части каркаса с платино­вой проволокой - 50÷100 мм, а с медной – 40 мм. Каркас для защиты от повреждений помещают в тонкостенную алюминиевую гильзу 3, а для улучшения теплопередачи от измеряемой среды к намотанной части каркаса между последней и защитной гиль­зой 3 устанавливаются упругие металличе­ские пластинки 4 или массивный металличе­ский вкладыш. При изготовлении медных термопреобра­зователей сопротивления применяют безын­дукционную бескаркасную намотку. В каче­стве материала используют изолированную медную проволоку диаметром 0,08 мм, по­крытую фторопластовой пленкой. Гильзу 3 с ее содержимым помещают во внешний, обычно стальной, замкнутый чехол 5, кото­рый устанавливается на объекте измерения с помощью штуцера 6. На внешней стороне чехла располагается соединительная голов­ка 8, в которой находится изоляционная ко­лодка 7 с винтами для крепления выводных проводов, идущих от каркаса через изоля­ционные бусы 9.   Рисунок - Конструкция термометра с металличе­ским термопреобразова­телем сопротивления

Полупроводниковые термопреобразователи сопротивления при­меняются для измерения температуры от –100 до 300 °С. В каче­стве материалов для них используются различные полупроводни­ковые вещества – оксиды магния, кобальта, марганца, титана, меди, кристаллы германия. Основным преимуществом полупроводников является их боль­шой отрицательный температурный коэффициент сопротивления. При повышении температуры полупроводников на один градус их сопротивление уменьшается на 3–5%, что делает их очень чувст­вительным к изменению температуры. Кроме того, они обладают значительным удельным сопротивлением и потому даже при очень малых размерах обладают значительным номинальным электри­ческим сопротивлением (от нескольких до сотен кОм), что позволяет не учитывать сопротивления соединительных проводов и элементов измерительной схемы. Следствием же малых разме­ров полупроводниковых термопреобразователей сопротивления является возможность безынерционного измерения температуры.

Недостатком полупроводниковых материалов является их зна­чительная нелинейность и, главное, невоспроизводимость градуировочной характеристики. Поэтому полупроводниковые термопре­образователи сопротивления даже одного и того же типа имеют индивидуальные градуировки и не взаимозаменяемы.

Исключением являются германиевые термопреобразователи сопротивления, которые при технических измерениях используют­ся для температур 30÷90 К с погрешностью ± (0,05–0,1) К, а также специальный германиевый термопреобразователь, предназ­наченный в качестве эталонного термометра для воспроизведения температурной шкалы в интервале 4,2÷13,81 К с погрешностью не более ± 0,001 К. Чувствительные элементы из полупроводников выполняются в виде цилиндров, шайб, бусинок малых размеров.

В силу указанных недостатков полупроводниковые термопре­образователи сопротивления редко используются для измерения температуры. Они находят широкое применение в системах тем­пературной сигнализации, вследствие присущего им релейного эффекта – скачкообразного изменения сопротивления при дости­жении определенной температуры. Кроме того, полупроводнико­вые термопреобразователи сопротивления используются в каче­стве чувствительных элементов в различных газоаналитических автоматических приборах.


1 | 2 | 3 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)