|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Конструкции ректификационных колоннТарельчатые колпачковые колонны (рис. а) наиболее часто применяют в ректификационных установках. Конструктивная схема устройства колпачка и обозначения основных размеров приведены на рис. а. Пары с предыдущей тарелки попадают в паровые патрубки колпачков и барботируют через слой жидкости, в которую частично погружены колпачки. Колпачки имеют отверстия или зубчатые прорези, расчленяющие пар на мелкие струйки для увеличения поверхности соприкосновения его с жидкостью. Переливные трубки служат для подвода и отвода жидкости и регулирования ее уровня на тарелке. Основной областью массообмена и теплообмена между парами и жидкостью, как показали исследования, является слой пены и брызг над тарелкой, создающийся в результате барботажа пара. Высота этого слоя зависит от размеров колпачков, глубины их погружения, скорости пара, толщины слоя жидкости на тарелке, физических свойств жидкости и др. Расчет основных размеров колпачков и некоторые рекомендации изложены в методике расчета тарельчатых колпачковых колонн. Следует отметить, что, кроме колпачковых тарелок, применяют также клапанные, желобчатые, S-образные, чешуйчатые, провальные и другие конструкции тарелок. В расчетах необходимо учитывать особенности конструкций тарелок. Клапанные тарелки (рис. 6 ) показали высокую эффективность при значительных интервалах нагрузок благодаря возможности саморегулирования. В зависимости от нагрузки клапан перемещается вертикально, изменяя площадь живого сечения для прохода пара, причем максимальное сечение определяется высотой устройства, ограничивающего подъем. Площадь живого сечения отверстий для пара составляет 10—15% площади сечения колонны. Скорость пара достигает 1,2 м/с. Клапаны изготовляют в виде пластин круглого или прямоугольного сечения с верхним (рис. б) или нижним (рис. в) ограничителем подъема. Тарелки, собранные из S-образных элементов, обеспечивают движение пара и жидкости в одном направлении, способствуя выравниванию концентрации жидкости на тарелке. Площадь живого сечения тарелки составляет 12—20% от площади сечения колонны. Коробчатое поперечное сечение элемента создает значительную жесткость, позволяющую устанавливать его на опорное кольцо без промежуточных опор в колоннах диаметром до 4,5 м. Чешуйчатые тарелки подают пар в направлении потока жидкости. Они работают наиболее эффективно при струйном режиме, возникающем при скорости пара в чешуях свыше 12 м/с. Площадь живого сечения составляет 10% площади сечения колонны. Чешуи бывают арочными и лепестковыми; их располагают на тарелке в шахматном порядке. Простота конструкции, эффективность и большая производительность — преимущества этих тарелок. Пластинчатые тарелки собраны из отдельных пластин, расположенных под углом 4—9° к горизонтам. В зазорах между пластинами проходит пар со скоростью 20 — 50 м/с. Над пластинами установлены отбойные щитки, уменьшающие брызгоунос. Эти тарелки отличаются большой производительностью, малым сопротивлением и простотой конструкции. К провальным относят тарелки решетчатые, колосниковые, трубчатые, ситчатые (плоские или волнистые без сливных устройств). Площадь живого сечения тарелок изменяется в пределах 15—30%. Жидкость и пар проходят попеременно через каждое отверстие в зависимости от соотношения их напоров. Тарелки имеют малое сопротивление, высокий к. п. д., работают при значительных нагрузках и отличаются простотой конструкции. Прямоточные тарелки обеспечивают длительное контактирование пленки жидкости с паром, движущимся со скоростью 14— 45 м/с. Площадь живого сечения тарелки достигает 30%. Ситчатые колонны (см. рис. б) применяют главным образом при ректификации спирта и жидкого воздуха. Допустимые нагрузки по жидкости и пару для них относительно невелики, и регулирование режима их работы затруднительно. Массо- и теплообмен между паром и жидкостью в основном происходят на некотором расстоянии от дна тарелки в слое пены и брызг. Давление и скорость пара, проходящего через отверстия сетки, должны быть достаточны для преодоления давления слоя жидкости на тарелке и создания сопротивления ее отеканию через отверстия. Ситчатые тарелки необходимо устанавливать строго горизонтально для обеспечения прохождения пара через все отверстия тарелки, а также во избежание стекания жидкости через них. Обычно диаметр отверстий ситчатой тарелки принимают в пределах 0,8—3,0 мм. Насадочные колонны получили широкое распространение в промышленности (см. рис. в). Они представляют собой цилиндрические аппараты, заполненные инертными материалами в виде кусков определенного размера или насадочными телами, имеющими форму, например, колец, шаров для увеличения поверхности фазового контакта и интенсификации перемешивания жидкой и паровой фаз. Массо- и теплообмен в колоннах с насадкой характеризуются не только явлениями молекулярной диффузии, определяющимися физическими свойствами фаз, но и гидродинамическими условиями работы колонны, которые определяют турбулентность потоков. В зависимости от скорости потока в колонне возможны три гидродинамических режима: ламинарный, промежуточный и турбулентный,— при которых поток пара является сплошным, непрерывным и заполняет свободный объем насадки, не занятый жидкостью, в то время как жидкость стекает лишь по поверхности насадки. Дальнейшее развитие турбулентного движения может привести к преодолению сил поверхностного натяжения и нарушению граничной поверхности между потоками жидкости и пара. При этом газовые вихри проникают в поток жидкости, происходит эмульгирование жидкости паром, и массообмен между фазами резко возрастает. В случае эмульгирования жидкость распределяется не по насадке, а заполняет весь ее свободный объем, не занятый паром; жидкость образует сплошную фазу, а газ — дисперсную фазу, распределенную в жидкости, т. е. происходит инверсия фаз. Исследования показали, что переход от турбулентного режима к режиму эмульгирования (точка инверсии или точка начала эмулыирования) соответствует оптимальным условиям работы колонны и оптимальной скорости пара, при которой на насадке задерживается максимальное количество жидкости, брызг и пены, достигаются интенсивный массообмен и максимальная производительность при минимальной высоте насадки. Насадочную колонну следует рассчитывать, исходя из оптимальной скорости. При превышении оптимальной скорости начинается обращенное движение жидкости снизу вверх, происходит так называемое “захлебывание” колонны и нарушение режима ее работы. Трубчатые пленочные ректификационные колонны состоят из пучка вертикальных труб, по внутренней поверхности которых тонкой пленкой стекает жидкость, взаимодействуя с поднимающимся по трубам паром. Пар поступает из куба в трубки. Флегма образуется в дефлегматоре непосредственно на внутренней поверхности трубок, охлаждаемых водой в верхней их части. Диаметр применяемых трубок-5—20 мм. Эффект работы пленочного аппарата возрастает с уменьшением диаметра трубок. Трубчатые колонны характеризуются простотой изготовления, высокими коэффициентами массопередачи и весьма малыми гидравлическими сопротивлениями движению пара. Многотрубные (и длиннотрубные) колонны с искусственным орошением имеют значительно меньшие габаритные размеры и массу, чем тарельчатые. Все ректификационные установки, независимо от типа и конструкции колонн, классифицируют на установки периодического и непрерывного действия. В ректификационных установках периодического действия начальную смесь заливают в перегонный куб, где поддерживается непрерывное кипение с образованием паров. Пар поступает на укрепление в колонну, орошаемую частью дистиллята. Другая часть дистиллята из дефлегматора или концевого холодильника, охлажденная до определенной температуры, через контрольный фонарь поступает в сборник готового продукта. В колоннах периодического действия ректификацию проводят до тех пор, пока жидкость в кубе не достигает заданного состава. Затем обогрев куба прекращают, остаток сливают в сборник, а в куб вновь загружают на перегонку начальную смесь. Установки периодической ректификации успешно применяют для разделения небольших количеств смесей. Большим недостатком ректификационных установок периодического действия является ухудшение качества готового продукта (дистиллята) по мере протекания процесса, а также потери тепла при периодической разгрузке и загрузке куба. Эти недостатки устраняются при непрерывной ректификации. Колонны непрерывного действия состоят из нижней (исчерпывающей) части, в которой происходит удаление легколетучего компонента из стекающей вниз жидкости, и верхней (укрепляющей) части, назначение которой—обогащение поднимающихся паров легколетучего компонента. Схема установки непрерывной ректификации отличается от периодической тем, что питание колонны начальной смесью определенного состава происходит непрерывно с постоянной скоростью; готовый продукт постоянного качества также непрерывно отводится. При ректификации смесей, состоящих более чем из двух компонентов, схема установки значительно усложняется. При этом для каждого добавочного компонента требуется колонна с дефлегматором. Размеры и конструкции перегонного куба, дефлегматора и концевого холодильника зависят от производительности установки, физических свойств перегоняемой смеси и режима процесса (периодический или непрерывный). Дефлегматор обычно представляет собой кожухотрубчатый теплообменник. В ряде случаев в дефлегматоре происходит конденсация всех паров, вышедших из колонны. В концевом холодильнике дистиллят охлаждается до заданной температуры. Иногда в дефлегматоре конденсируется лишь часть паров для получения флегмы, а полная конденсация и охлаждение происходят в холодильнике. Ректификационные установки снабжают также приборами для регулирования и контроля режима работы и нередко аппаратами для утилизации тепла.
Ректификационная колонна — аппарат, предназначенный для разделения жидких смесей, составляющие которых имеют различную температуру кипения. Классическая колонна представляет собой вертикальный цилиндр с контактными устройствами внутри. Ректификация (от лат. rectus— прямой и facio— делаю) — это тепломассообменный процесс, в результате которого конденсация составляющих пара происходит раздельно. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |