|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Хвилі де БройляПП.05.05.03 Корпускулярно-хвильовий дуалізм. Хвильові властивості мікрочастинок.
Тема 6. Хвильові властивості мікрочастинок
Хвилі де Бройля
Інтерференція і дифракція світла переконливо свідчать про хвильову природу світла. У той же час закономірності рівноважного теплового випромінювання, фотоефекту й ефекту Комптона можна успішно витлумачити лише на підставі квантових уявлень про світло як про потік дискретних фотонів. Проте хвильовий і квантовий (корпускулярний) засіб опису світла не суперечать, а взаємно доповнюють один одного, так що світло одночасно володіє і хвильовими і корпускулярними властивостями. Воно є діалектичною єдністю (двоєдністю) цих протилежних властивостей. Ідея універсальної корпускулярно-хвильової двоєдності стала основоположною в квантовій механіці.Квантова механіка виникла у зв’язку з потребою пояснити ті явища, які відбуваються в малих ділянках простору за участю частинок малої маси, тобто явища, які класична фізика пояснити була безсила. У 1924 р. Л. де Бройль висунув сміливу гіпотезу про корпускулярно-хвильовий дуалізм матеріальних частинок, основна ідея якої про хвильові властивості частинок була незабаром підтверджена на дифракції електронів, а потім – нейтронів, протонів, а також атомах гелію і натрію. У відповідності до теорії відносності Луі де Бройль виходить з припущення, що з кожною частинкою з масою спокою пов’язаний хвильовий процес з частотою , так що , де h – стала Планка; с – швидкість світла у вакуумі. Цей основний постулат означає, що кожна частинка матерії є місцем і джерелом зв’язаного з нею коливання з частотою, яка визначається вищезгаданим співвідношенням. Тому формула де Бройля встановлює залежність довжини хвилі частинки, яка рухається, від імпульсу частинки p: , (1.1) де m – маса частинки; – швидкість; h – стала Планка. Ці хвилі називаютьсяхвилями де Бройля. Формули де Бройля мають також інший вигляд , (1.2) де – хвильовий вектор; а – хвильове число, тобто число довжин хвиль, які укладаються на одиницях довжини, Дж×с. Довжина хвилі де Бройля для частинки з масою m, яка має кінетичну енергію (1.3) Для електрона, який прискорився в електричному полі з різницею потенціалів вольт . (1.4) Хвильові властивості не виявлені у макроскопічних тілах. Довжини хвиль де Бройля для таких тіл настільки малі, що виявити хвильові властивості неможливо. Фазова швидкість хвиль де Бройля вільної частинки , (1.5) де – енергія вільної частинки; – імпульс; m – маса; – швидкість частинки; – довжина дебройлевської хвилі. Залежність фазової швидкості дебройлевських хвиль від довжини хвилі показує, що хвилі зазнають дисперсії. Групова швидкість хвиль де Бройля дорівнює швидкості частинки . (1.6) Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |