АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Внутренне противоречивые следствия

Читайте также:
  1. I Ватиканский собор (1869–1870) и его последствия (1870–1878)
  2. III. Соблазн и его непосредственные последствия
  3. XI. О ВНУТРЕННЕЙ БРАНИ КАК О СРЕДСТВЕ ДЛЯ ДОСТИЖЕНИЯ ЦЕЛИ
  4. XIV. ВНУТРЕННЕЕ СЦЕНИЧЕСКОЕ САМОЧУВСТВИЕ
  5. А-всасывание; б-перемещение (без изменения внутреннего объема); в-сжатие; г-нагнетание (выталкивание) газа.
  6. Административная ответственность как вид административного принуждения. Применение административной ответственности, ее цели, принципы и последствия.
  7. Активизация военно-морской стратегии США и нарастание внутреннего кризиса в Японии
  8. Анализ факторов внутренней и внешней среды организации.
  9. Анатомия внутреннего уха
  10. АРБИТРАЖ И ЕГО ПОСЛЕДСТВИЯ
  11. Архитектура внутреннего ролевого конфликта
  12. Б) для выражения следствия или заключения

По логическому закону противоречия одно из двух противоречащих друг другу утверждений ложно. Поэтому, если в числе следствий какого-либо положения встретились и утверждение, и отрицание одного и того же, можно сразу сказать, что это положение ложно.

 

Например, положение «Квадрат – это окружность» ложно, поскольку из него выводится как то, что квадрат имеет углы, так и то, что у него нет углов.

 

Ложным будет также положение, из которого выводится внутренне противоречивое высказывание или высказывание о тождестве утверждения и отрицания.

Один из приемов косвенного доказательства – выведение из антитезиса логического противоречия. Если антитезис содержит противоречие, он явно ошибочен. Тогда его отрицание – тезис доказательства – верно.

Хорошим примером косвенного доказательства служит известное доказательство Евклида, что ряд простых чисел бесконечен.

 

Простые – это натуральные числа больше единицы, делящиеся только на себя и на единицу. Простые числа – это как бы «первичные элементы», на которые все целые числа (больше 1) могут быть разложены. Естественно предположить, что ряд простых чисел: 2, 3, 5, 7, 11, 13,... бесконечен. Для доказательства данного тезиса допустим, что это не так, и посмотрим, к чему ведет такое допущение. Если ряд простых чисел конечен, существует последнее простое число ряда – А. Образуем, далее, другое число: В = (2хЗх5х... х А) + 1. Число В больше А, поэтому В не может быть простым числом. Значит, В должно делиться на простое число. Но если В разделить на любое из чисел 2, 3, 5,..., А, то в остатке получится 1.. Следовательно, В не делится ни на одно из указанных простых чисел и является, таким образом, простым. В итоге, исходя из предположения, что существует последнее простое число, мы пришли к противоречию: существует число одновременно и простое, и не являющееся простым. Это означает, что сделанное предположение ложно и правильно противоположное утверждение: ряд простых чисел бесконечен.

 

В этом косвенном доказательстве из антитезиса выводится логическое противоречие, что прямо говорит о ложности антитезиса и, соответственно, об истинности тезиса. Такого рода доказательства широко используются в математике.

Если имеется в виду только та часть подобных доказательств, в которой показывается ошибочность какого-либо предположения, они именуются по традиции приведением к абсурду. Ошибочность предположения вскрывается тем, что из него выводится абсурд, т.е. логическое противоречие.

Имеется еще одна разновидность косвенного доказательства, когда прямо не приходится искать ложные следствия. Дело в том, что для доказательства утверждения достаточно показать, что оно логически вытекает из своего собственного отрицания.

К примеру, если из допущения, что дважды два равно пяти, выведено, что это не так, тем самым доказано, что дважды два не равняется пяти.

По такой схеме рассуждал еще Евклид в своей «Геометрии». Эту же схему использовал однажды древнегреческий философ Демокрит в споре с другим древнегреческим философом, софистом Протагором. Протагор утверждал, что истинно все то, что кому-либо приходит в голову. На это Демокрит ответил, что из положения «Каждое высказывание истинно» вытекает истинность и его отрицания «Не все высказывания истинны». И значит, это отрицание, а не положение Протагора на самом деле истинно.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)