АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Ртуть в жидком состоянии

Читайте также:
  1. В растворенном состоянии в клеточном соке находятся:
  2. Меры безопасности при работе со ртутью.
  3. Одна церковь не в состоянии привлечь каждого человека. Для привлечения разных людей необходимы разнообразные церкви.
  4. Описание блок-схемы функционирования СОВС в состоянии «Работа».
  5. Пантомимика в состоянии отвращения и экспрессивные реакции
  6. Понятие о здоровье, болезни, состоянии предболезни. Проблема нормы и аномалии.
  7. Правила техники безопасности при работе с ртутьсодержащим оборудованием.
  8. Ртуть в твердом состоянии
  9. Уход за больными в тяжёлом и бессознательном состоянии
  10. Физико-химические параметры суспензии во взвешенном состоянии

Удельная теплоемкость при 0°С 0,139 кДж/(кг·К) [0,03336 кал/(г·°С)], при 200°С 0,133 кДж/(кг·К) [0,0319 кал/(г·°С)]; температурный коэффициент линейного расширения 1,826·10-4 (0-100 °С); теплопроводность 8,247 Вт/(м·К) [0,0197 кал/(см·сек·°С)] (при 20 °С); удельное электросопротивление при 0°С 94,07·10-8 ом·м (94,07·10-6 ом·см).

Конфигурация внешних электронов атома Hg 5d106s2, в соответствии с чем при химических реакциях образуются катионы Hg2+ и Hg22+. Химическая активность Ртути невелика. В сухом воздухе (или кислороде) она при комнатной температуре сохраняет свой блеск неограниченно долго. С кислородом дает два соединения: черный оксид (I) Hg2O и красный оксид (II) HgO. Hg2O появляется в виде черной пленки на поверхности Ртути при действии озона. HgO образуется при нагревании Hg на воздухе (300-350 °С), а также при осторожном нагревании нитратов Hg(NO3)2 или Hg2(NO3)2. Гидрооксид Ртути практически не образуется. При взаимодействии с металлами, которые Ртуть смачивает, образуются амальгамы. Из сернистых соединений важнейшим является HgS, которую получают растиранием Hg с серным цветом при комнатной температуре, а также осаждением растворов солей Hg2+ сероводородом или сульфидом щелочного металла. С галогенами (хлором, иодом) Ртуть соединяется при нагревании, образуя почти недиссоциирующие, в большинстве ядовитые соединения типа HgX2. В соляной и разбавленной серной кислотах Ртуть не растворяется, но растворима в царской водке, азотной и горячей концентрированной серной кислотах.

Почти все соли Hg2+ плохо растворимы в воде. К хорошо растворимым относится нитрат Hg(NO3)2. Большое значение имеют хлориды Ртути: Hg2Cl2 (каломель) и HgCl2 (сулема). Известны соли окисной Ртути цианистой и роданистой кислот, а также ртутная соль гремучей кислоты Hg(ONC)2 так называемых гремучая ртуть. При действии аммиака на соли образуются многочисленные комплексные соединения, например HgCl-2NH3 (плавкий белый преципитат) и HgNH2Cl (неплавкий белый преципитат). Применение находят ртутьорганические соединения.

Теплоемкость ртути, как и воды, с ростом температуры (от точки плавления до +80°C) последовательно уменьшается и лишь после определенного температурного «порога» (после 80°C) начинает медленно расти. Если охлаждать ртуть очень медленно, ее, как и воду, можно переохладить. В переохлажденном состоянии жидкая ртуть существует при температуре ниже –50°C.

В 1911 г. голландский ученый Гейке Камерлинг-Оннес исследовал электропроводность ртути при низкой температуре. С каждым опытом он уменьшал температуру, и когда она достигла 4,12°K, сопротивление ртути, до этого последовательно уменьшавшееся, вдруг исчезло совсем: электрический ток проходил по ртутному кольцу, не затухая. Так было открыто явление сверхпроводимости, и ртуть стала первым сверхпроводником.

 

Использованная литература

 

Н. Л. Глинка – Общая химия

http://ru.wikipedia.org/

http://twt.mpei.ac.ru/tthb/2/OIVT/HB_v201/Glava9/9.pdf

 


1 | 2 | 3 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)